In-field rice panicles detection and growth stages recognition based on RiceRes2Net

最小边界框 人工智能 模式识别(心理学) 播种 计算机科学 农学 数学 生物 图像(数学)
作者
Suiyan Tan,Henghui Lu,Jie Yu,Maoyang Lan,Xihong Hu,Huiwen Zheng,Yingtong Peng,Yuwei Wang,Zehua Li,Long Qi,Xu Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107704-107704 被引量:29
标识
DOI:10.1016/j.compag.2023.107704
摘要

Accurate rice panicle detection and growth stages recognition are crucial steps in rice field phenotyping. However, conventional manual characterization of rice panicles is time consuming and labor intensive. In this study, a RiceRes2Net based on improved Cascade RCNN (Region-CNN) architecture was proposed to detect the rice panicle and recognize the growth stages under the complex field environment. RiceRes2Net first adopted the Res2Net network and Feature Pyramid Network (FPN) as the backbone network to generate and fuse multi-scale feature maps. Then, RiceRes2Net constituted a four IoU thresholds cascade RCNN to deal with multi-scale feature maps to give the target class prediction and coordinate regression of the bounding boxes. In addition, Soft non-maximum suppression (Soft NMS) and Generalized Intersection over Union (GIoU) loss function were also integrated into RiceRes2Net to better predict the bounding boxes of the occluded panicles. Datasets of the rice panicles were acquired by smartphone in two comprehensive field plot experiments under complex field background. Rice panicles differed in genotype, planting density, growing practices, planting season and growth stages, which constituted a comprehensive rice panicles phenotyping. The results showed that RiceRes2Net outperformed the traditional cascade RCNN in rice panicle detection, with average precision (AP) values of 96.8%, 93.7%, 82.4% at booting stage, heading stage, and filling stage, respectively. Furthermore, RiceRes2Net has a significant advantage in detecting the occlusion panicle thereby increase the accuracy. To test the robustness of RiceRes2Net, the counting results of RiceRes2Net was compared with the manual counting results with an independent test set. The RMSE values at three growth stages were 1.19, 2.56, and 3.13, respectively. In addition, the performance of the RiceRes2Net was compared to the widely used state-of-art deep learning models. The results showed that RiceRes2Net can learn a more representative set of features that helped better locate the rice panicles at three growth stages, and thus achieved better detection accuracy than the other deep learning models. In terms of panicle growth stages recognition, RiceRes2Net showed satisfactory results with high precision values of 99.83%, 99.34%, and 94.59% in recognition of booting stage, heading stage, and filling stage, respectively. The average accuracy of growth stages recognition was 96.42%. The overall results suggest that RiceRes2Net is a promising tool for detection of rice panicles and the growth stage, and has great potentials for field applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸运星完成签到 ,获得积分10
1秒前
在水一方应助施傲天采纳,获得10
1秒前
勤奋火龙果完成签到,获得积分20
1秒前
ZHH发布了新的文献求助10
2秒前
3秒前
xf潇洒哥发布了新的文献求助20
4秒前
情怀应助徐小徐采纳,获得10
4秒前
4秒前
6秒前
上官若男应助专注的翠采纳,获得10
8秒前
8秒前
NexusExplorer应助烂漫的芸遥采纳,获得30
8秒前
科研通AI5应助berrypeng采纳,获得10
9秒前
9秒前
ccf发布了新的文献求助10
9秒前
烟花应助魁梧的曼凡采纳,获得10
9秒前
11秒前
小白应助KOKOGOGO采纳,获得20
12秒前
思源应助zzzxiangyi采纳,获得10
12秒前
12秒前
FashionBoy应助苗条小甜瓜采纳,获得10
12秒前
12秒前
13秒前
mimi发布了新的文献求助10
13秒前
13秒前
道松先生发布了新的文献求助10
14秒前
科研通AI2S应助冷艳的荷花采纳,获得10
14秒前
15秒前
紫芋发布了新的文献求助10
16秒前
霖霖发布了新的文献求助10
16秒前
日光下发布了新的文献求助10
17秒前
dandna完成签到 ,获得积分10
19秒前
自觉发箍发布了新的文献求助30
19秒前
123发布了新的文献求助10
19秒前
JavedAli完成签到,获得积分10
19秒前
yangou发布了新的文献求助10
19秒前
19秒前
今后应助wkyueeee采纳,获得10
22秒前
道松先生完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898662
求助须知:如何正确求助?哪些是违规求助? 4179345
关于积分的说明 12974628
捐赠科研通 3943264
什么是DOI,文献DOI怎么找? 2163262
邀请新用户注册赠送积分活动 1181613
关于科研通互助平台的介绍 1087229