In-field rice panicles detection and growth stages recognition based on RiceRes2Net

最小边界框 人工智能 模式识别(心理学) 播种 计算机科学 农学 数学 生物 图像(数学)
作者
Suiyan Tan,Henghui Lu,Jie Yu,Maoyang Lan,Xihong Hu,Huiwen Zheng,Yingtong Peng,Yuwei Wang,Zehua Li,Long Qi,Xu Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107704-107704 被引量:27
标识
DOI:10.1016/j.compag.2023.107704
摘要

Accurate rice panicle detection and growth stages recognition are crucial steps in rice field phenotyping. However, conventional manual characterization of rice panicles is time consuming and labor intensive. In this study, a RiceRes2Net based on improved Cascade RCNN (Region-CNN) architecture was proposed to detect the rice panicle and recognize the growth stages under the complex field environment. RiceRes2Net first adopted the Res2Net network and Feature Pyramid Network (FPN) as the backbone network to generate and fuse multi-scale feature maps. Then, RiceRes2Net constituted a four IoU thresholds cascade RCNN to deal with multi-scale feature maps to give the target class prediction and coordinate regression of the bounding boxes. In addition, Soft non-maximum suppression (Soft NMS) and Generalized Intersection over Union (GIoU) loss function were also integrated into RiceRes2Net to better predict the bounding boxes of the occluded panicles. Datasets of the rice panicles were acquired by smartphone in two comprehensive field plot experiments under complex field background. Rice panicles differed in genotype, planting density, growing practices, planting season and growth stages, which constituted a comprehensive rice panicles phenotyping. The results showed that RiceRes2Net outperformed the traditional cascade RCNN in rice panicle detection, with average precision (AP) values of 96.8%, 93.7%, 82.4% at booting stage, heading stage, and filling stage, respectively. Furthermore, RiceRes2Net has a significant advantage in detecting the occlusion panicle thereby increase the accuracy. To test the robustness of RiceRes2Net, the counting results of RiceRes2Net was compared with the manual counting results with an independent test set. The RMSE values at three growth stages were 1.19, 2.56, and 3.13, respectively. In addition, the performance of the RiceRes2Net was compared to the widely used state-of-art deep learning models. The results showed that RiceRes2Net can learn a more representative set of features that helped better locate the rice panicles at three growth stages, and thus achieved better detection accuracy than the other deep learning models. In terms of panicle growth stages recognition, RiceRes2Net showed satisfactory results with high precision values of 99.83%, 99.34%, and 94.59% in recognition of booting stage, heading stage, and filling stage, respectively. The average accuracy of growth stages recognition was 96.42%. The overall results suggest that RiceRes2Net is a promising tool for detection of rice panicles and the growth stage, and has great potentials for field applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
colorful发布了新的文献求助10
刚刚
爆米花应助侯谋采纳,获得10
1秒前
三点水完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
伶俐的思枫完成签到,获得积分10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Jaikaran应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
安安发布了新的文献求助10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Jaikaran应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得30
8秒前
8秒前
焦晓媛完成签到,获得积分10
8秒前
feng发布了新的文献求助20
8秒前
虚幻蹇发布了新的文献求助10
9秒前
grace完成签到 ,获得积分10
11秒前
13秒前
geopotter完成签到,获得积分10
15秒前
15秒前
fafentuqiang完成签到,获得积分10
15秒前
colorful完成签到,获得积分10
16秒前
16秒前
开朗寻凝发布了新的文献求助10
18秒前
Ava应助专注一行青文采纳,获得10
18秒前
学习使我快乐完成签到 ,获得积分10
18秒前
韩较瘦完成签到,获得积分0
19秒前
19秒前
Raymond完成签到 ,获得积分10
21秒前
ProfLi完成签到 ,获得积分10
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103175
求助须知:如何正确求助?哪些是违规求助? 3640775
关于积分的说明 11537614
捐赠科研通 3349652
什么是DOI,文献DOI怎么找? 1840461
邀请新用户注册赠送积分活动 907512
科研通“疑难数据库(出版商)”最低求助积分说明 824598