A DWI-based radiomics-clinical machine learning model to preoperatively predict the futile recanalization after endovascular treatment of acute basilar artery occlusion patients

医学 接收机工作特性 队列 改良兰金量表 溶栓 无线电技术 置信区间 曲线下面积 放射科 逻辑回归 Lasso(编程语言) 机器学习 核医学 内科学 缺血 心肌梗塞 缺血性中风 万维网 计算机科学
作者
Yuqi Luo,Xuan Sun,Xin Kong,Xu Tong,Fengjun Xi,Yu M,Zhongrong Miao,Jun Ma
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:161: 110731-110731 被引量:12
标识
DOI:10.1016/j.ejrad.2023.110731
摘要

To develop an effective machine learning model to preoperatively predict the occurrence of futile recanalization (FR) of acute basilar artery occlusion (ABAO) patients with endovascular treatment (EVT).Data from 132 ABAO patients (109 male [82.6 %]; mean age ± standard deviation, 59.1 ± 12.5 years) were randomly divided into the training (n = 106) and test cohort (n = 26) with a ratio of 8:2. FR is defined as a poor outcome [modified Rankin Scale (mRS) 4-6] despite a successful recanalization [modified Thrombolysis in Cerebral Infarction (mTICI) ≥ 2b]. A total of 1130 radiomics features were extracted from diffusion-weighted imaging (DWI) images. The least absolute shrinkage and selection operator (LASSO) regression method was applicated to select features. Support vector machine (SVM) was applicated to construct radiomics and clinical models. Finally, a radiomics-clinical model that combined clinical with radiomics features was developed. The models were evaluated by receiver operating characteristic (ROC) curve and decision curve.The area under the receiver operating characteristic (ROC) curve (AUC) of the radiomics-clinical model was 0.897 (95 % confidence interval, 0.837-0.958) in the training cohort and 0.935 (0.833-1.000) in the test cohort. The AUC of the radiomics model was 0.887 (0.824-0.951) in the training cohort and 0.840 (0.680-1.000) in the test cohort. The AUC of the clinical model was 0.746 (0.652-0.840) in the training cohort and 0.766 (0.569-0.964) in the test cohort. The AUC of the radiomics-clinical model was significantly larger than the clinical model (p = 0.016). A radiomics-clinical nomogram was developed. The decision curve analysis indicated its clinical usefulness.The DWI-based radiomics-clinical machine learning model achieved satisfactory performance in predicting the FR of ABAO patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jying发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
glucose完成签到,获得积分10
2秒前
蒋时晏应助紧张的蘑菇采纳,获得30
3秒前
嘻嘻哈哈眼药水完成签到,获得积分10
4秒前
Andy完成签到 ,获得积分10
4秒前
李健应助忐忑的鬼神采纳,获得10
4秒前
allenise发布了新的文献求助10
5秒前
鄙视注册完成签到,获得积分10
6秒前
moiumuio完成签到,获得积分10
8秒前
淡定可乐完成签到,获得积分10
12秒前
13秒前
15秒前
沈海发布了新的文献求助10
18秒前
Carrie完成签到,获得积分10
19秒前
西米发布了新的文献求助10
20秒前
Iiirds完成签到 ,获得积分10
20秒前
温暖的碧蓉完成签到 ,获得积分10
21秒前
成就书雪完成签到,获得积分0
21秒前
lh完成签到 ,获得积分10
23秒前
冯二发布了新的文献求助10
23秒前
DRDOC完成签到,获得积分10
24秒前
上官翠花完成签到 ,获得积分10
24秒前
allenise完成签到,获得积分10
25秒前
心灵美的白卉完成签到,获得积分10
25秒前
韩_完成签到,获得积分10
26秒前
科研通AI5应助正直博涛采纳,获得10
26秒前
liushiyi完成签到,获得积分10
26秒前
呼呼呼完成签到,获得积分10
26秒前
领导范儿应助allenise采纳,获得10
28秒前
香蕉觅云应助sunshine999采纳,获得10
30秒前
JamesPei应助爱听歌笑寒采纳,获得10
30秒前
科研顺利完成签到 ,获得积分10
31秒前
wzx完成签到,获得积分10
33秒前
ccc完成签到 ,获得积分10
33秒前
34秒前
沈海完成签到,获得积分10
36秒前
Nirvan发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535