A DWI-based radiomics-clinical machine learning model to preoperatively predict the futile recanalization after endovascular treatment of acute basilar artery occlusion patients

医学 接收机工作特性 队列 改良兰金量表 溶栓 无线电技术 置信区间 曲线下面积 放射科 逻辑回归 Lasso(编程语言) 机器学习 核医学 内科学 缺血 心肌梗塞 缺血性中风 万维网 计算机科学
作者
Yuqi Luo,Xuan Sun,Xin Kong,Xu Tong,Fengjun Xi,Yu M,Zhongrong Miao,Jun Ma
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:161: 110731-110731 被引量:18
标识
DOI:10.1016/j.ejrad.2023.110731
摘要

To develop an effective machine learning model to preoperatively predict the occurrence of futile recanalization (FR) of acute basilar artery occlusion (ABAO) patients with endovascular treatment (EVT).Data from 132 ABAO patients (109 male [82.6 %]; mean age ± standard deviation, 59.1 ± 12.5 years) were randomly divided into the training (n = 106) and test cohort (n = 26) with a ratio of 8:2. FR is defined as a poor outcome [modified Rankin Scale (mRS) 4-6] despite a successful recanalization [modified Thrombolysis in Cerebral Infarction (mTICI) ≥ 2b]. A total of 1130 radiomics features were extracted from diffusion-weighted imaging (DWI) images. The least absolute shrinkage and selection operator (LASSO) regression method was applicated to select features. Support vector machine (SVM) was applicated to construct radiomics and clinical models. Finally, a radiomics-clinical model that combined clinical with radiomics features was developed. The models were evaluated by receiver operating characteristic (ROC) curve and decision curve.The area under the receiver operating characteristic (ROC) curve (AUC) of the radiomics-clinical model was 0.897 (95 % confidence interval, 0.837-0.958) in the training cohort and 0.935 (0.833-1.000) in the test cohort. The AUC of the radiomics model was 0.887 (0.824-0.951) in the training cohort and 0.840 (0.680-1.000) in the test cohort. The AUC of the clinical model was 0.746 (0.652-0.840) in the training cohort and 0.766 (0.569-0.964) in the test cohort. The AUC of the radiomics-clinical model was significantly larger than the clinical model (p = 0.016). A radiomics-clinical nomogram was developed. The decision curve analysis indicated its clinical usefulness.The DWI-based radiomics-clinical machine learning model achieved satisfactory performance in predicting the FR of ABAO patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
某某1发布了新的文献求助10
1秒前
852应助小沫采纳,获得10
1秒前
大飞发布了新的文献求助10
1秒前
Miya完成签到 ,获得积分10
2秒前
飲啖茶食個包应助Nan采纳,获得50
2秒前
4秒前
YY完成签到,获得积分10
4秒前
英俊的铭应助JW2071367采纳,获得10
4秒前
超级柠檬发布了新的文献求助10
4秒前
5秒前
Sunny完成签到 ,获得积分10
6秒前
lbyscu完成签到 ,获得积分10
8秒前
9秒前
薏米人儿完成签到 ,获得积分10
10秒前
英俊的铭应助Yaoz采纳,获得10
11秒前
11秒前
胡胡胡发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助周周采纳,获得10
13秒前
14秒前
16秒前
爱吃蒸蛋完成签到,获得积分10
16秒前
兔子发布了新的文献求助10
17秒前
穆空完成签到,获得积分10
17秒前
18秒前
19秒前
超级柠檬完成签到,获得积分10
19秒前
彭于晏应助祖念真采纳,获得150
19秒前
20秒前
20秒前
Engen完成签到 ,获得积分10
21秒前
21秒前
21秒前
大虫子发布了新的文献求助10
22秒前
超超发布了新的文献求助10
22秒前
小沫完成签到,获得积分10
23秒前
善学以致用应助junjie采纳,获得10
23秒前
忐忑的黑米完成签到,获得积分10
23秒前
李健的粉丝团团长应助hhh采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340009
求助须知:如何正确求助?哪些是违规求助? 3848649
关于积分的说明 12018675
捐赠科研通 3489747
什么是DOI,文献DOI怎么找? 1915266
邀请新用户注册赠送积分活动 958268
科研通“疑难数据库(出版商)”最低求助积分说明 858449