From Perception to Prediction and Interpretation: Enlightening the Gray Zone of Molecular Bricks of Life With the Help of Machine Learning and Quantum Chemistry

自由度(物理和化学) 计算机科学 工作流程 福井函数 量子 波函数 功能(生物学) 可解释性 人工智能 统计物理学 算法 化学 物理 量子力学 生物化学 电泳剂 数据库 进化生物学 生物 催化作用
作者
Vincenzo Barone
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (1) 被引量:11
标识
DOI:10.1002/wcms.70000
摘要

ABSTRACT The latest developments of a general exploration/exploitation strategy for the computational study of molecular bricks of life in the gas‐phase are presented and illustrated by means of prototypical semi‐rigid and flexible systems. In the first step, generalized natural internal coordinates are employed to obtain a clear‐cut separation between different degrees of freedom, and machine‐learning algorithms based on chemical descriptors (synthons) drive fast quantum chemical methods in the exploration of rugged potential energy surfaces ruled by soft degrees of freedom. Then, different quantum chemical models are carefully selected for exploiting energies, geometries, and vibrational frequencies with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, a composite wave‐function method is used for energies, whereas a double‐hybrid functional is employed for geometries and harmonic frequencies and a cheaper global hybrid functional for anharmonic contributions. A panel of molecular bricks of life containing up to 50 atoms is employed to show that the proposed strategy draws closer to the accuracy of state‐of‐the‐art composite wave‐function methods for small semi‐rigid molecules, but is applicable to much larger systems. The implementation of the whole computational workflow in terms of preprocessing and postprocessing of data provided by standard electronic structure codes paves the way toward the accurate yet not prohibitively expensive study of medium‐ to large‐sized molecules by a user‐friendly black‐box tool exploitable also by experiment‐oriented researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助CWB15338647174采纳,获得10
刚刚
YXH完成签到,获得积分10
1秒前
鱼队发布了新的文献求助10
1秒前
脑洞疼应助靠谱采纳,获得10
1秒前
1秒前
1秒前
123完成签到,获得积分10
2秒前
乐观乐枫发布了新的文献求助10
2秒前
3秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
西瓜汁完成签到,获得积分10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
打打应助固态采纳,获得10
6秒前
zyh发布了新的文献求助10
6秒前
李爱国应助年123采纳,获得10
6秒前
阳光的静白完成签到,获得积分10
6秒前
6秒前
guard发布了新的文献求助10
7秒前
共享精神应助科研小王子采纳,获得10
7秒前
送你一颗棒棒糖完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
小小关注了科研通微信公众号
9秒前
赵千灵发布了新的文献求助10
9秒前
9秒前
脑洞疼应助Adorey3016采纳,获得10
9秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242165
求助须知:如何正确求助?哪些是违规求助? 4408835
关于积分的说明 13723124
捐赠科研通 4277945
什么是DOI,文献DOI怎么找? 2347480
邀请新用户注册赠送积分活动 1344593
关于科研通互助平台的介绍 1302680