Mn Doping at High‐Activity Octahedral Vacancies of γ‐Fe2O3 for Oxygen Reduction Reaction Electrocatalysis in Metal‐Air Batteries

催化作用 杂原子 八面体 兴奋剂 电催化剂 无机化学 材料科学 基质(水族馆) 氧气 空位缺陷 化学 结晶学 电极 物理化学 电化学 晶体结构 有机化学 戒指(化学) 地质学 海洋学 光电子学
作者
Liuzhe Qiu,Zhong Wu,Yingjie Liu,Zhenbo Qin,Yichun Liu,Jinfeng Zhang,Yida Deng,Wenbin Hu
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202421918
摘要

γ‐Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ‐Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn‐doped γ‐Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ‐Fe2O3 as the precursor. Further, the vacancy in γ‐Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half‐wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm−2 and 403 mWcm−2 for Mg‐air batteries and Al‐air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ‐Fe2O3 along with the modification of the adsorption/desorption properties for ORR oxygen‐containing intermediates as well as the optimization of the reaction energy barriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
casperzwj完成签到,获得积分10
3秒前
浮游应助无语的代真采纳,获得10
5秒前
万能图书馆应助liaoyaya采纳,获得10
6秒前
6秒前
着急的沅完成签到,获得积分10
8秒前
8秒前
11秒前
小张发布了新的文献求助10
11秒前
研友_LNMmW8发布了新的文献求助100
14秒前
14秒前
大模型应助书颜采纳,获得10
16秒前
17秒前
30完成签到 ,获得积分10
17秒前
科研通AI6应助琳666采纳,获得20
18秒前
18秒前
陆志琴完成签到,获得积分10
21秒前
周凯发布了新的文献求助10
22秒前
核桃发布了新的文献求助10
24秒前
宝丁完成签到 ,获得积分10
24秒前
无奈狗完成签到,获得积分10
25秒前
lj完成签到,获得积分10
25秒前
29秒前
31秒前
无花果应助谨慎寒云采纳,获得50
31秒前
32秒前
坚定的若枫完成签到,获得积分10
32秒前
33秒前
35秒前
felix发布了新的文献求助10
36秒前
37秒前
38秒前
38秒前
科研通AI6应助蓝色采纳,获得10
39秒前
40秒前
41秒前
lanadalray发布了新的文献求助10
42秒前
李健应助百里幻竹采纳,获得10
43秒前
书颜发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804224
求助须知:如何正确求助?哪些是违规求助? 4120940
关于积分的说明 12749856
捐赠科研通 3853955
什么是DOI,文献DOI怎么找? 2122412
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035632