Pair-Soil-Spectra: An Approach for NIRS-Based Soil Total Nitrogen Content Detection with Feature Metrics in Cases of Small Sample Sizes

偏最小二乘回归 马氏距离 土工试验 化学 特征(语言学) 公制(单位) 土壤科学 模式识别(心理学) 随机森林 样品(材料) 人工智能 统计 土壤水分 计算机科学 数学 环境科学 哲学 经济 色谱法 语言学 运营管理
作者
Yueting Wang,Chunjiang Zhao,Zhen Xing,Mingyan Zhu,Liangliang Hao,Ke Wang,J. Bai,Hongwu Tian,Daming Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c04548
摘要

Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是毛果芸香碱完成签到,获得积分10
1秒前
铅笔995完成签到,获得积分10
1秒前
1秒前
可行完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
默11发布了新的文献求助10
4秒前
liu_ps完成签到,获得积分10
4秒前
4秒前
4秒前
ccm1992完成签到,获得积分10
6秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
hnxxangel完成签到,获得积分10
8秒前
科研通AI5应助accept白采纳,获得10
8秒前
8秒前
奇酱发布了新的文献求助10
8秒前
一二发布了新的文献求助30
8秒前
zhuqiang完成签到,获得积分10
9秒前
9秒前
CodeCraft应助DING采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
哇哈哈完成签到,获得积分10
11秒前
布丁完成签到,获得积分10
11秒前
爆米花应助zhuzhu采纳,获得10
11秒前
靓丽的沁完成签到,获得积分20
12秒前
12秒前
无花果应助Lion采纳,获得10
12秒前
DY发布了新的文献求助10
13秒前
13秒前
合适愫关注了科研通微信公众号
13秒前
故酒应助默11采纳,获得10
13秒前
故酒应助默11采纳,获得10
13秒前
赘婿应助默11采纳,获得10
13秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820668
求助须知:如何正确求助?哪些是违规求助? 3363564
关于积分的说明 10423418
捐赠科研通 3081956
什么是DOI,文献DOI怎么找? 1695358
邀请新用户注册赠送积分活动 815060
科研通“疑难数据库(出版商)”最低求助积分说明 768856