清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated longitudinal treatment response assessment of brain tumors: A systematic review

概化理论 检查表 医学物理学 批判性评价 医学 梅德林 临床试验 系统回顾 荟萃分析 人工智能 机器学习 计算机科学 内科学 心理学 病理 替代医学 政治学 发展心理学 法学 认知心理学
作者
Tangqi Shi,Aaron Kujawa,C. Arenas Linares,Tom Vercauteren,Thomas C. Booth
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:27 (8): 1946-1971 被引量:1
标识
DOI:10.1093/neuonc/noaf037
摘要

Abstract Background Longitudinal assessment of tumor burden using imaging helps to determine whether there has been a response to treatment both in trial and real-world settings. From a patient and clinical trial perspective alike, the time to develop disease progression, or progression-free survival, is an important endpoint. However, manual longitudinal response assessment is time-consuming and subject to interobserver variability. Automated response assessment techniques based on machine learning (ML) promise to enhance accuracy and reduce reliance on manual measurement. This paper evaluates the quality and performance accuracy of recently published studies. Methods Following PRISMA guidelines and the CLAIM checklist, we searched PUBMED, EMBASE, and Web of Science for articles (January 2010–November 2024). Our PROSPERO-registered study (CRD42024496126) focused on adult brain tumor automated treatment response assessment studies using ML methodologies. We determined the extent of development and validation of the tools and employed QUADAS-2 for study appraisal. Results Twenty (including 17 retrospective and 3 prospective) studies were included. Data extracted included information on the dataset, automated response assessment including pertinent steps within the pipeline (index tests), and reference standards. Only limited conclusions are appropriate given the high bias risk and applicability concerns (particularly regarding reference standards and patient selection), and the low-level evidence. There was insufficient homogenous data for meta-analysis. Conclusions The study highlights the potential of ML to improve brain tumor longitudinal treatment response assessment. Interpretation is limited due to study bias and limited evidence of generalizability. Prospective studies with external datasets validating the latest neuro-oncology criteria are now required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
常有李发布了新的文献求助30
12秒前
ontheway发布了新的文献求助10
16秒前
41秒前
1分钟前
1分钟前
1分钟前
FashionBoy应助荼黎采纳,获得10
1分钟前
大个应助阔达的未来采纳,获得10
1分钟前
安蓝完成签到,获得积分10
1分钟前
2分钟前
荼黎发布了新的文献求助10
2分钟前
学术霸王完成签到,获得积分10
2分钟前
2分钟前
安蓝发布了新的文献求助10
2分钟前
不安青牛应助安蓝采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
修fei完成签到 ,获得积分10
3分钟前
Blaseaka完成签到 ,获得积分0
3分钟前
1437594843完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
ontheway发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
5分钟前
Cara发布了新的文献求助10
5分钟前
领导范儿应助Cara采纳,获得10
5分钟前
jeffgong完成签到,获得积分10
5分钟前
6分钟前
小核桃完成签到 ,获得积分10
6分钟前
小珂完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Strength and Conditioning in Sports From Science to Practice By Michael Stone, Timothy Suchomel, W. Hornsby, John Wagle, Aaron Cunanan Copyright 2022 600
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617147
求助须知:如何正确求助?哪些是违规求助? 4701498
关于积分的说明 14913769
捐赠科研通 4750314
什么是DOI,文献DOI怎么找? 2549337
邀请新用户注册赠送积分活动 1512350
关于科研通互助平台的介绍 1474091