Automated longitudinal treatment response assessment of brain tumors: A systematic review

概化理论 检查表 医学物理学 批判性评价 医学 梅德林 临床试验 系统回顾 荟萃分析 人工智能 机器学习 计算机科学 内科学 心理学 病理 替代医学 法学 认知心理学 发展心理学 政治学
作者
Tangqi Shi,Aaron Kujawa,C. Arenas Linares,Tom Vercauteren,Thomas C. Booth
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:27 (8): 1946-1971 被引量:1
标识
DOI:10.1093/neuonc/noaf037
摘要

Abstract Background Longitudinal assessment of tumor burden using imaging helps to determine whether there has been a response to treatment both in trial and real-world settings. From a patient and clinical trial perspective alike, the time to develop disease progression, or progression-free survival, is an important endpoint. However, manual longitudinal response assessment is time-consuming and subject to interobserver variability. Automated response assessment techniques based on machine learning (ML) promise to enhance accuracy and reduce reliance on manual measurement. This paper evaluates the quality and performance accuracy of recently published studies. Methods Following PRISMA guidelines and the CLAIM checklist, we searched PUBMED, EMBASE, and Web of Science for articles (January 2010–November 2024). Our PROSPERO-registered study (CRD42024496126) focused on adult brain tumor automated treatment response assessment studies using ML methodologies. We determined the extent of development and validation of the tools and employed QUADAS-2 for study appraisal. Results Twenty (including 17 retrospective and 3 prospective) studies were included. Data extracted included information on the dataset, automated response assessment including pertinent steps within the pipeline (index tests), and reference standards. Only limited conclusions are appropriate given the high bias risk and applicability concerns (particularly regarding reference standards and patient selection), and the low-level evidence. There was insufficient homogenous data for meta-analysis. Conclusions The study highlights the potential of ML to improve brain tumor longitudinal treatment response assessment. Interpretation is limited due to study bias and limited evidence of generalizability. Prospective studies with external datasets validating the latest neuro-oncology criteria are now required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云儿发布了新的文献求助10
1秒前
1秒前
酷波er应助keen703采纳,获得10
1秒前
glassysky完成签到,获得积分10
2秒前
2秒前
2秒前
8566发布了新的文献求助10
2秒前
David完成签到,获得积分10
3秒前
zhangzhisenn发布了新的文献求助10
3秒前
talitha应助liwei采纳,获得30
3秒前
3秒前
QiQi应助Pluto采纳,获得10
3秒前
wocao发布了新的文献求助10
4秒前
粉色娇嫩发布了新的文献求助10
4秒前
完美怀亦发布了新的文献求助10
4秒前
5秒前
孙传彬完成签到,获得积分10
5秒前
6秒前
6秒前
David发布了新的文献求助10
6秒前
6秒前
stone发布了新的文献求助10
6秒前
7秒前
zhuzhu发布了新的文献求助10
7秒前
pbj发布了新的文献求助10
8秒前
8秒前
8秒前
诗槐关注了科研通微信公众号
9秒前
jie酱拌面应助MooN采纳,获得10
9秒前
天天快乐应助要努力鸭采纳,获得10
10秒前
汉堡包应助平淡凡之采纳,获得10
10秒前
大大怪发布了新的文献求助10
10秒前
Lontano完成签到,获得积分10
10秒前
10秒前
wjx发布了新的文献求助10
11秒前
超级王国发布了新的文献求助10
11秒前
hjyylab发布了新的文献求助10
12秒前
李大帅完成签到 ,获得积分10
12秒前
彭于晏应助pbj采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
戦後少女マンガ史 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155682
求助须知:如何正确求助?哪些是违规求助? 4351420
关于积分的说明 13548562
捐赠科研通 4194198
什么是DOI,文献DOI怎么找? 2300446
邀请新用户注册赠送积分活动 1300362
关于科研通互助平台的介绍 1245379