A physics-informed neural network for turbulent wake simulations behind wind turbines

物理 湍流 唤醒 人工神经网络 统计物理学 航空航天工程 机械 机器学习 工程类 计算机科学
作者
Azhar Gafoor,Sumanth Kumar Boya,Rishi Jinka,Abhineet Gupta,Ankit Tyagi,Suranjan Sarkar,Deepak N. Subramani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1) 被引量:3
标识
DOI:10.1063/5.0245113
摘要

Fast simulations of wind turbine wakes are crucial during the design phase of optimal wind farm layouts. Wind turbine wakes affect the performance of downstream turbines. Physics-informed neural networks (PINNs), a deep learning approach to simulate dynamical systems governed by partial differential equations, are gaining traction in computational fluid dynamics due to their fast inference capability. We developed a PINN model using the 2-equation k−ε model and the actuator disk method to simulate the wakes behind the wind turbines. Crucially, training of the developed PINN model does not rely on high-fidelity simulation data, thus reducing the end-to-end training time by saving simulation data generation time. We tested the model against traditional solvers and field data to simulate the turbulent wake behind the HOLEC WPS 30/3 Wind Turbine from Sexbierum and a three-blade 630-kW Nibe-B wind turbine. Detailed computational studies are completed to establish convergence properties with increasing sampling collocation points and the number of graphical processing units. A transfer learning strategy is introduced to accelerate training for new scenarios resulting in a 5× speedup. Our results establish the efficacy of the PINN model in simulating turbulent flows. Compared to field data, our PINN model and traditional Reynolds-averaged Navier–Stokes (RANS) numerical solvers, such as the shear stress transport k −ω and Reynolds stress model have similar errors, suggesting its utility as a replacement to these RANS solvers. The model architecture, trained weights, and code are available in https://github.com/quest-lab-iisc/PINN_WakeTurbulenceModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouxu发布了新的文献求助10
1秒前
现代书雪发布了新的文献求助10
1秒前
1秒前
大模型应助朱zz采纳,获得10
1秒前
汉堡包应助liangliang采纳,获得10
2秒前
Zekun完成签到,获得积分10
2秒前
2秒前
易楠发布了新的文献求助10
2秒前
踏实的白羊完成签到,获得积分10
3秒前
5秒前
Ava应助blueming采纳,获得10
6秒前
酷波er应助4归0采纳,获得10
6秒前
nature发布了新的文献求助10
7秒前
科研通AI5应助跳跃的烨华采纳,获得10
7秒前
鲸鱼发布了新的文献求助10
7秒前
精致的灰完成签到,获得积分10
8秒前
李健应助zoe采纳,获得20
8秒前
思源应助922采纳,获得10
8秒前
三物完成签到 ,获得积分10
9秒前
9秒前
sivan完成签到,获得积分10
10秒前
小富发布了新的文献求助10
10秒前
illusion2019应助科研通管家采纳,获得10
11秒前
竹筏过海应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
竹筏过海应助科研通管家采纳,获得30
11秒前
illusion2019应助科研通管家采纳,获得10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
慕青应助lc采纳,获得10
12秒前
wws完成签到,获得积分10
13秒前
14秒前
思源应助zhouxu采纳,获得10
15秒前
15秒前
朱zz发布了新的文献求助10
15秒前
hugo完成签到,获得积分10
15秒前
大个应助英雷采纳,获得10
16秒前
nature完成签到,获得积分10
16秒前
鲸鱼发布了新的文献求助20
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409