A physics-informed neural network for turbulent wake simulations behind wind turbines

物理 湍流 唤醒 人工神经网络 统计物理学 航空航天工程 机械 机器学习 计算机科学 工程类
作者
Azhar Gafoor,Sumanth Kumar Boya,Rishi Jinka,Abhineet Gupta,Ankit Tyagi,Suranjan Sarkar,Deepak N. Subramani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1) 被引量:5
标识
DOI:10.1063/5.0245113
摘要

Fast simulations of wind turbine wakes are crucial during the design phase of optimal wind farm layouts. Wind turbine wakes affect the performance of downstream turbines. Physics-informed neural networks (PINNs), a deep learning approach to simulate dynamical systems governed by partial differential equations, are gaining traction in computational fluid dynamics due to their fast inference capability. We developed a PINN model using the 2-equation k−ε model and the actuator disk method to simulate the wakes behind the wind turbines. Crucially, training of the developed PINN model does not rely on high-fidelity simulation data, thus reducing the end-to-end training time by saving simulation data generation time. We tested the model against traditional solvers and field data to simulate the turbulent wake behind the HOLEC WPS 30/3 Wind Turbine from Sexbierum and a three-blade 630-kW Nibe-B wind turbine. Detailed computational studies are completed to establish convergence properties with increasing sampling collocation points and the number of graphical processing units. A transfer learning strategy is introduced to accelerate training for new scenarios resulting in a 5× speedup. Our results establish the efficacy of the PINN model in simulating turbulent flows. Compared to field data, our PINN model and traditional Reynolds-averaged Navier–Stokes (RANS) numerical solvers, such as the shear stress transport k −ω and Reynolds stress model have similar errors, suggesting its utility as a replacement to these RANS solvers. The model architecture, trained weights, and code are available in https://github.com/quest-lab-iisc/PINN_WakeTurbulenceModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
67号完成签到 ,获得积分10
1秒前
清脆安南完成签到 ,获得积分10
1秒前
嗯哼发布了新的文献求助10
1秒前
浮游应助立青采纳,获得10
1秒前
2秒前
2秒前
日初发布了新的文献求助10
2秒前
桐桐应助dmyy313235采纳,获得10
2秒前
3秒前
大头完成签到 ,获得积分10
4秒前
5秒前
852应助优雅沛文采纳,获得10
6秒前
hiahiayue关注了科研通微信公众号
6秒前
共享精神应助无定采纳,获得10
6秒前
小张完成签到,获得积分10
7秒前
一只秤砣完成签到 ,获得积分10
7秒前
wanci应助米粒采纳,获得10
7秒前
好好学习发布了新的文献求助10
7秒前
Owen应助wenwen0666采纳,获得10
8秒前
8秒前
孤独千愁发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
酷酷完成签到,获得积分10
10秒前
小张发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
FashionBoy应助Silole采纳,获得10
12秒前
小马甲应助小杨采纳,获得10
12秒前
红花会完成签到,获得积分10
12秒前
13秒前
14秒前
书枫哥哥发布了新的文献求助10
14秒前
闪闪夏天完成签到,获得积分20
14秒前
14秒前
石南风发布了新的文献求助10
16秒前
立青完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4842526
求助须知:如何正确求助?哪些是违规求助? 4143616
关于积分的说明 12829650
捐赠科研通 3889692
什么是DOI,文献DOI怎么找? 2138345
邀请新用户注册赠送积分活动 1158395
关于科研通互助平台的介绍 1058420