MedLesSynth-LD: Lesion synthesis using physics-based noise models for robust lesion segmentation in low-data medical imaging regimes

病变 分割 噪音(视频) 人工智能 医学影像学 合成数据 计算机视觉 模式识别(心理学) 计算机科学 物理 医学 病理 图像(数学)
作者
Ramanujam Narayanan,Vaanathi Sundaresan
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:188: 155-163 被引量:4
标识
DOI:10.1016/j.patrec.2024.12.011
摘要

Training models for robust lesion segmentation in medical imaging relies on the availability of sufficiently large pathological datasets and high-quality manual annotations. Hence, training such models is challenging in low-data regimes, even for localised lesions with defined boundaries, due to the lack of representation of variations in contrast, texture and sizes. In this work, we proposed a lesion simulation method, MedLesSynth-LD, to overcome the lack of diversity in localised lesion characteristics for training robust segmentation models. In MedLesSynth-LD, we used noise models inherently based on the physics involved in the acquisition of modalities to generate sufficiently realistic lesion textures by perturbing healthy tissues. Later, we localised these perturbations within masks defined by composites of ellipsoids (thus forming random shapes) and blended them with the input image with varying contrast. The lesion simulation step does not require training and can be tailored to generate defined, localised lesions to introduce sufficient variability (in size, shape, texture and contrast) in the training data pool. We evaluated the performance of a downstream lesion segmentation task using simulated lesionsfor multiple publicly available datasets across imaging modalities and organs: Brain MRI for tumour and white matter hyperintensity segmentation, liver CT for tumour segmentation, breast ultrasound for tumour segmentation, and retinal fundus imaging for exudate segmentation. Using only 75% of labelled real-world data, the proposed method significantly improved lesion segmentation compared to real data-based fully supervised training with an 16% mean increase in the Dice score (DSC) and 33% mean decrease in the normalised 95th percentile of the Hausdorff distance (HD95 (norm)). The proposed method also performed better than state-of-the-art lesion segmentation methods in low-data regimes, with an 10% higher mean DSC and a 19% mean decrease in HD95 (norm). The source code is available at https://github.com/Ramanujam-N/MedLesSynth-LD [commit SHA cc2b15b].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尧尧发布了新的文献求助10
1秒前
2秒前
CipherSage应助accept白采纳,获得10
2秒前
SciGPT应助bu才采纳,获得10
2秒前
翟林悦完成签到,获得积分10
3秒前
盛夏细闻发布了新的文献求助10
3秒前
核桃应助欧欧拉格朗日采纳,获得200
3秒前
LIUTONG发布了新的文献求助30
4秒前
晞嘻发布了新的文献求助10
4秒前
wu发布了新的文献求助10
4秒前
5秒前
5秒前
寒冰如初发布了新的文献求助10
6秒前
夏艳平发布了新的文献求助10
6秒前
翟林悦发布了新的文献求助10
6秒前
SciGPT应助伊可创采纳,获得10
7秒前
SciGPT应助菠萝吹雪采纳,获得10
7秒前
xiao123789完成签到,获得积分10
7秒前
小心完成签到,获得积分10
8秒前
华仔应助小小丫采纳,获得10
8秒前
光亮的珩完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
张文凯完成签到,获得积分20
11秒前
小肥杨完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
啊啾啾发布了新的文献求助20
12秒前
所所应助Elaine采纳,获得10
12秒前
无花果应助尧尧采纳,获得10
13秒前
70发布了新的文献求助10
13秒前
fla发布了新的文献求助10
13秒前
JZZZZ发布了新的文献求助10
13秒前
盛夏细闻完成签到,获得积分10
14秒前
七七完成签到,获得积分10
14秒前
汉堡包应助whisper采纳,获得10
14秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726