Plasma proteomic profiles predict individual future osteoarthritis risk

生命银行 混淆 骨关节炎 危险系数 置信区间 内科学 生物标志物 医学 生物信息学 肿瘤科 生物 病理 遗传学 替代医学
作者
Zijian Kang,J L Zhang,Wenxin Liu,Chen Zhu,Ying Zhu,Ping Li,Kai Li,Qiang Tong,Sheng‐Ming Dai
出处
期刊:Arthritis & rheumatology [Wiley]
标识
DOI:10.1002/art.43143
摘要

Osteoarthritis (OA) is a widespread degenerative joint disease that causes a considerable socioeconomic burden. Despite progress in genetic and environmental insights, early diagnosis is still limited by the lack of evident symptoms during the initial phases and accurate biomarkers. This study aims to identify plasma proteins associated with future risk of OA and develop a predictive model. We conducted a large-scale proteomic analysis of 45,307 participants from the UK Biobank, excluding those with baseline OA. Plasma samples were assayed using the Olink Explore Proximity Extension Assay targeting 1,463 unique proteins. Clinical variables and OA outcomes were extracted and linked to electronic health records. A predictive model was constructed using the LightGBM machine learning method, and the SHapley Additive exPlanations (SHAP) were applied to evaluate the importance of variables. We identified a panel of proteins significantly associated with the risk of developing OA. Notably, after adjusting for multiple confounders, Collagen Type IX Alpha 1 Chain (COL9A1) and Cartilage Acidic Protein 1 (CRTAC1) were the most significant predictors of incident OA, with hazard ratios (HR) of 1.54 (95% confidence interval [CI]:1.48-1.61) and 1.65 (95% CI:1.54-1.78), respectively. SHAP analysis allowed a profound interpretation of the contribution of each protein and clinical variable to the model, revealing the multifactorial nature of OA risk prediction. The temporal trajectories of plasma proteins indicated that the levels of COL9A1 and CRTAC1 began to deviate from normal for more than a decade before OA onset, suggesting their potential use in early detection strategies. The predictive model, developed using the LightGBM algorithm, integrated proteins with clinical covariates and demonstrated an area under the curve (AUC) of 0.729 for 5-year OA prediction, 0.721 for 10-year prediction, and 0.723 for all incident OA. The predictive accuracy of the model was further enhanced for hip and knee OA, achieving AUCs of 0.820 and 0.803 for 5-year predictions. Our study identified the role of plasma proteomics in predicting future OA risk, which could contribute to preemptive measures. The innovative model, which integrates proteomic biomarkers with clinical data, offers a potential tool for risk assessment, potentially optimizing OA management strategies and enhancing prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
我不会乱起名字的完成签到,获得积分10
5秒前
5秒前
小也发布了新的文献求助10
8秒前
爆米花应助Enri采纳,获得10
8秒前
11秒前
777完成签到,获得积分20
13秒前
VDC应助123采纳,获得50
14秒前
15秒前
汉堡包应助小也采纳,获得10
15秒前
777发布了新的文献求助10
16秒前
HH完成签到,获得积分10
18秒前
可靠的亦竹完成签到 ,获得积分10
18秒前
21秒前
22秒前
111完成签到,获得积分10
24秒前
25秒前
小也完成签到 ,获得积分10
26秒前
Aaa_12012完成签到,获得积分10
27秒前
littlestar发布了新的文献求助10
28秒前
ding7862完成签到,获得积分10
31秒前
33秒前
littlestar完成签到,获得积分20
34秒前
贺小刚发布了新的文献求助10
35秒前
叶轻寒完成签到 ,获得积分10
37秒前
arcstar发布了新的文献求助10
38秒前
里里要努力完成签到,获得积分10
41秒前
尘南浔完成签到 ,获得积分10
41秒前
明理的以亦应助Linda采纳,获得10
42秒前
洁净百川完成签到 ,获得积分10
44秒前
46秒前
47秒前
笨笨芯应助1111采纳,获得10
47秒前
48秒前
50秒前
50秒前
Albert完成签到,获得积分10
50秒前
认真果汁发布了新的文献求助10
51秒前
imp发布了新的文献求助10
52秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783167
求助须知:如何正确求助?哪些是违规求助? 3328504
关于积分的说明 10236746
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670607
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119