亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Plasma Proteomic Profiles Predict Individual Future Osteoarthritis Risk

生命银行 混淆 骨关节炎 危险系数 置信区间 内科学 生物标志物 医学 生物信息学 肿瘤科 生物 病理 遗传学 替代医学
作者
Zijian Kang,J L Zhang,Wenxin Liu,Chen Zhu,Ying Zhu,Ping Li,Kai Li,Qiang Tong,Sheng‐Ming Dai
出处
期刊:Arthritis & rheumatology [Wiley]
卷期号:77 (8): 981-995 被引量:8
标识
DOI:10.1002/art.43143
摘要

Objective Osteoarthritis (OA) is a widespread degenerative joint disease that causes a considerable socioeconomic burden. Despite progress in genetic and environmental insights, early diagnosis is still limited by the lack of evident symptoms during the initial phases and accurate biomarkers. This study aims to identify plasma proteins associated with future risk of OA and develop a predictive model. Methods We conducted a large‐scale proteomic analysis of 45,307 participants from the UK Biobank, excluding those with baseline OA. Plasma samples were assayed using the Olink Explore Proximity Extension Assay targeting 1,463 unique proteins. Clinical variables and OA outcomes were extracted and linked to electronic health records. A predictive model was constructed using the LightGBM machine learning method, and SHapley Additive exPlanations (SHAP) were applied to evaluate the importance of variables. Results We identified a panel of proteins significantly associated with the risk of developing OA. Notably, after adjusting for multiple confounders, collagen type IX alpha 1 chain (COL9A1) and cartilage acidic protein 1 (CRTAC1) were the most significant predictors of incident OA, with hazard ratios of 1.54 (95% confidence interval [CI] 1.48–1.61) and 1.65 (95% CI 1.54–1.78), respectively. SHAP analysis allowed a profound interpretation of the contribution of each protein and clinical variable to the model, revealing the multifactorial nature of OA risk prediction. The temporal trajectories of plasma proteins indicated that the levels of COL9A1 and CRTAC1 began to deviate from normal for more than a decade before OA onset, suggesting their potential use in early detection strategies. The predictive model, developed using the LightGBM algorithm, integrated proteins with clinical covariates and demonstrated an area under the curve (AUC) of 0.729 for 5‐year OA prediction, 0.721 for 10‐year prediction, and 0.723 for all incident OA. The predictive accuracy of the model was further enhanced for hip and knee OA, achieving AUCs of 0.820 and 0.803 for 5‐year predictions. Conclusion Our study identified the role of plasma proteomics in predicting future OA risk, which could contribute to preemptive measures. The innovative model, which integrates proteomic biomarkers with clinical data, offers a potential tool for risk assessment, potentially optimizing OA management strategies and enhancing prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得30
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
25秒前
ajing完成签到,获得积分10
43秒前
1分钟前
194711发布了新的文献求助10
1分钟前
ilihe应助飞天大南瓜采纳,获得10
1分钟前
灵感大王喵完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助予秋采纳,获得10
1分钟前
1分钟前
斯文败类应助司徒恋风采纳,获得10
2分钟前
shun完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小粒橙完成签到 ,获得积分10
2分钟前
充电宝应助xuan采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
xuan完成签到,获得积分10
2分钟前
3分钟前
沉静语蓉发布了新的文献求助10
3分钟前
外向的妍完成签到,获得积分10
3分钟前
3分钟前
Gremelody发布了新的文献求助10
3分钟前
辉辉应助Gremelody采纳,获得10
3分钟前
3分钟前
Gremelody完成签到,获得积分10
3分钟前
司徒恋风发布了新的文献求助10
3分钟前
Akim应助科研通管家采纳,获得30
4分钟前
siiifang完成签到 ,获得积分10
4分钟前
4分钟前
wangdong发布了新的文献求助10
4分钟前
二舅司机发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
笑点低的斑马完成签到,获得积分10
5分钟前
整齐的乐驹完成签到 ,获得积分10
5分钟前
5分钟前
xiaozhou发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617100
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913716
捐赠科研通 4749324
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091