Plasma proteomic profiles predict individual future osteoarthritis risk

生命银行 混淆 骨关节炎 危险系数 置信区间 内科学 生物标志物 医学 生物信息学 肿瘤科 生物 病理 遗传学 替代医学
作者
Zijian Kang,J L Zhang,Wenxin Liu,Chen Zhu,Ying Zhu,Ping Li,Kai Li,Qiang Tong,Sheng‐Ming Dai
出处
期刊:Arthritis & rheumatology [Wiley]
标识
DOI:10.1002/art.43143
摘要

Osteoarthritis (OA) is a widespread degenerative joint disease that causes a considerable socioeconomic burden. Despite progress in genetic and environmental insights, early diagnosis is still limited by the lack of evident symptoms during the initial phases and accurate biomarkers. This study aims to identify plasma proteins associated with future risk of OA and develop a predictive model. We conducted a large-scale proteomic analysis of 45,307 participants from the UK Biobank, excluding those with baseline OA. Plasma samples were assayed using the Olink Explore Proximity Extension Assay targeting 1,463 unique proteins. Clinical variables and OA outcomes were extracted and linked to electronic health records. A predictive model was constructed using the LightGBM machine learning method, and the SHapley Additive exPlanations (SHAP) were applied to evaluate the importance of variables. We identified a panel of proteins significantly associated with the risk of developing OA. Notably, after adjusting for multiple confounders, Collagen Type IX Alpha 1 Chain (COL9A1) and Cartilage Acidic Protein 1 (CRTAC1) were the most significant predictors of incident OA, with hazard ratios (HR) of 1.54 (95% confidence interval [CI]:1.48-1.61) and 1.65 (95% CI:1.54-1.78), respectively. SHAP analysis allowed a profound interpretation of the contribution of each protein and clinical variable to the model, revealing the multifactorial nature of OA risk prediction. The temporal trajectories of plasma proteins indicated that the levels of COL9A1 and CRTAC1 began to deviate from normal for more than a decade before OA onset, suggesting their potential use in early detection strategies. The predictive model, developed using the LightGBM algorithm, integrated proteins with clinical covariates and demonstrated an area under the curve (AUC) of 0.729 for 5-year OA prediction, 0.721 for 10-year prediction, and 0.723 for all incident OA. The predictive accuracy of the model was further enhanced for hip and knee OA, achieving AUCs of 0.820 and 0.803 for 5-year predictions. Our study identified the role of plasma proteomics in predicting future OA risk, which could contribute to preemptive measures. The innovative model, which integrates proteomic biomarkers with clinical data, offers a potential tool for risk assessment, potentially optimizing OA management strategies and enhancing prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由的面包完成签到,获得积分10
1秒前
doctor周发布了新的文献求助10
3秒前
4秒前
冷静新烟发布了新的文献求助10
6秒前
6秒前
1101592875发布了新的文献求助30
7秒前
汉堡包应助summer采纳,获得30
8秒前
哈哈哈发布了新的社区帖子
8秒前
8秒前
9秒前
月初完成签到,获得积分10
9秒前
xona发布了新的文献求助10
10秒前
汉堡包应助杨丹丹采纳,获得10
12秒前
12秒前
13秒前
顾思凡发布了新的文献求助10
14秒前
14秒前
李小二发布了新的文献求助10
15秒前
15秒前
akaashi完成签到,获得积分10
17秒前
momo完成签到,获得积分10
17秒前
17秒前
17秒前
涂上小张发布了新的文献求助10
17秒前
领导范儿应助小大董采纳,获得10
20秒前
Yansz发布了新的文献求助10
20秒前
xona完成签到,获得积分10
20秒前
布曲发布了新的文献求助10
20秒前
水电站发布了新的文献求助10
21秒前
doctor周发布了新的文献求助10
22秒前
包容的千兰完成签到,获得积分10
22秒前
妮妮完成签到 ,获得积分10
22秒前
调皮帽子发布了新的文献求助10
23秒前
风清扬应助1101592875采纳,获得30
23秒前
23秒前
zerolake完成签到,获得积分10
24秒前
24秒前
xiaojia发布了新的文献求助10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930381
求助须知:如何正确求助?哪些是违规求助? 3475288
关于积分的说明 10986321
捐赠科研通 3205392
什么是DOI,文献DOI怎么找? 1771449
邀请新用户注册赠送积分活动 858995
科研通“疑难数据库(出版商)”最低求助积分说明 796906