Molecular Merged Hypergraph Neural Network for Explainable Solvation Free Energy Prediction

超图 溶剂化 人工神经网络 能量(信号处理) 计算机科学 人工智能 化学 数学 离散数学 分子 统计 有机化学
作者
Wenjie Du,Shuai Zhang,Zhaohui Cai,Zhiyuan Liu,Junfeng Fang,Jianmin Wang,Yang Wang
出处
期刊:Research [American Association for the Advancement of Science]
被引量:1
标识
DOI:10.34133/research.0740
摘要

Solvation free energies play a fundamental role in various fields of chemistry and biology. Accurately determining the solvation Gibbs free energy ( ΔGsolv ) of a molecule in a given solvent requires a deep understanding of the intrinsic relationships between solute and solvent molecules. While deep learning methods have been developed for ΔGsolv prediction, few explicitly model intermolecular interactions between solute and solvent molecules. The molecular modeling graph neural network more closely aligns with real-world chemical processes by explicitly capturing atomic-level interactions, such as hydrogen bonding. It achieves this by initially establishing indiscriminate connections between intermolecular atoms, which are subsequently refined using an attention-based aggregation mechanism tailored to specific solute-solvent pairs. However, its sharply increasing computational complexity limits its scalability and broader applicability. Here, we introduce an improved framework, molecular merged hypergraph neural network (MMHNN), which leverages a predefined subgraph set and replaces subgraphs with supernodes to construct a hypergraph representation. This design effectively mitigates model complexity while preserving key molecular interactions. Furthermore, to handle noninteractive or repulsive atomic interactions, MMHNN incorporates an interpretation mechanism for nodes and edges within the merged graph, leveraging the graph information bottleneck theory to enhance model explainability. Extensive experimental validation demonstrates the efficiency of MMHNN and its improved interpretability in capturing solute-solvent interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
俊秀的千万完成签到,获得积分20
1秒前
叶寻完成签到,获得积分20
2秒前
大虫子发布了新的文献求助10
2秒前
2秒前
羞涩的梦山完成签到,获得积分10
4秒前
x夏天发布了新的文献求助10
5秒前
火火关注了科研通微信公众号
5秒前
善学以致用应助Allen采纳,获得10
7秒前
哇samm发布了新的文献求助10
7秒前
7秒前
5433发布了新的文献求助10
7秒前
7秒前
10秒前
Hemingwayway发布了新的文献求助10
12秒前
yoyo5678发布了新的文献求助30
13秒前
13秒前
宓天问发布了新的文献求助10
15秒前
JamesPei应助陈晓琳采纳,获得10
16秒前
Ann发布了新的文献求助10
17秒前
17秒前
北风歌完成签到,获得积分10
18秒前
优雅的雨完成签到,获得积分10
18秒前
19秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
22秒前
田様应助科研通管家采纳,获得10
22秒前
馆长应助科研通管家采纳,获得50
22秒前
wanci应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
23秒前
不想干活应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525280
求助须知:如何正确求助?哪些是违规求助? 3965654
关于积分的说明 12290670
捐赠科研通 3629970
什么是DOI,文献DOI怎么找? 1997640
邀请新用户注册赠送积分活动 1034052
科研通“疑难数据库(出版商)”最低求助积分说明 923657