亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Prediction Platform for Sepsis Risk Based on Real-Time Dynamic Temporal Features: Design Study

可解释性 预警得分 计算机科学 败血症 血压 机器学习 医学 人工智能 预测建模 数据挖掘 重症监护医学 急诊医学 内科学
作者
M. Zhang,Ming Zhong,You Cheng,Tianyi Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:13: e74940-e74940 被引量:1
标识
DOI:10.2196/74940
摘要

Background The development of sepsis in the intensive care unit (ICU) is rapid, the golden rescue time is short, and the effective way to reduce mortality is rapid diagnosis and early warning. Therefore, real-time prediction models play a key role in the clinical diagnosis and management of sepsis. However, the existing sepsis prediction models based on artificial intelligence still have limitations, such as poor real-time performance and insufficient interpretation. Objective Our objective is to develop a real-time sepsis prediction model that integrates high timeliness and clinical interpretability. The model is designed to dynamically predict the risk of sepsis in ICU patients and establish a practical, tailored sepsis prediction platform. Methods Within a retrospective analysis framework, the model comprises a real-time prediction module and an interpretability module. The real-time prediction module leverages 3-hour dynamic temporal features derived from 8 noninvasive, real-time physiological indicators: heart rate, respiratory rate, blood oxygen saturation, mean arterial pressure, systolic blood pressure, diastolic blood pressure, body temperature, and blood glucose. Three linear parameters (mean, SD, and endpoint value) were calculated to construct the prediction model using multiple ML algorithms. The interpretability module uses the TreeSHAP (Tree-Based Shapley Additive Explanations) method to enhance model transparency through both individual prediction and global explanations. Further, it added a link between the output interpretation of the explainable artificial intelligence method and its potential physiological or pathophysiological significance, including the relationship among the output interpretation and the patient’s hemodynamics, thermoregulatory response, and the balance between oxygen delivery and oxygen consumption. Finally, a web-based platform was developed to integrate prediction and interpretability functions. Results The sepsis prediction model demonstrated robust performance in the test cohort (224 patients), achieving an accuracy of 0.7 (95% CI 0.68-0.71), precision of 0.69 (95% CI 0.68-0.71), F1-score of 0.69 (95% CI 0.67-0.70), and area under the receiver operating characteristic curve of 0.76 (95% CI 0.74-0.77). The TreeSHAP method effectively visualized feature contributions, enabling clinicians to interpret the model’s prediction logic and identify anomalies. The link between the output interpretation of the model and its potential physiological or pathophysiological significance improved the interpretability and credibility of the explainable artificial intelligence method. The web-based platform significantly enhanced clinical utility by providing real-time risk assessment, statistical summaries, trend analysis, and actionable insights. Conclusions This platform provides real-time dynamic warnings for sepsis risk in critically ill ICU patients, supporting timely clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI2S应助www采纳,获得10
26秒前
31秒前
www完成签到,获得积分10
37秒前
Shallery完成签到,获得积分10
42秒前
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
6666发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Jasper应助6666采纳,获得10
1分钟前
朗源Wu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
6666发布了新的文献求助10
1分钟前
2分钟前
CipherSage应助6666采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ABJ完成签到 ,获得积分10
3分钟前
nbtzy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
满意人英发布了新的文献求助10
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
范特西完成签到 ,获得积分10
3分钟前
3分钟前
jiaxiangxia完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470118
求助须知:如何正确求助?哪些是违规求助? 4573056
关于积分的说明 14337956
捐赠科研通 4499985
什么是DOI,文献DOI怎么找? 2465503
邀请新用户注册赠送积分活动 1453862
关于科研通互助平台的介绍 1428483