Dynamic HRV Monitoring and Machine Learning Predict NYHA Improvements in Acute Heart Failure Patients

心力衰竭 机器学习 计算机科学 人工智能 心脏病学 医学 内科学
作者
Ying Shi,Xiu Zhang,Chenbin Ma,Yue Zhang,Zhicheng Yang,Wei Yan,Muyang Yan,Qing Zhang,Zhengbo Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:189: 109995-109995
标识
DOI:10.1016/j.compbiomed.2025.109995
摘要

Heart failure (HF) is marked by significant morbidity, mortality, and readmission rates, highlighting a critical need for accurate assessment of treatment efficacy. The New York Heart Association (NYHA) classification, while standard, falls short in capturing treatment responses. Heart rate variability (HRV), a sensitive autonomic function indicator, offers a non-invasive HF prognosis monitoring tool. This study aimed to explore dynamic changes in HRV parameters (ΔHRV) between admission and discharge as novel biomarkers for acute-to-stable phase transition in HF, leveraging wearable devices and machine learning to enhance treatment efficacy assessment. We monitored HRV in 40 HF patients at admission and discharge using wearable devices. Statistical analysis and machine learning models were applied to assess the association between ΔHRV and NYHA classification improvements. Significant correlations were found between ΔHRV in SDNN and SD2 and NYHA enhancements (p < 0.001), with the Random Forest model achieving the highest predictive accuracy (AUC = 0.77). This study demonstrates that ΔHRV, particularly SDNN and SD2, serves as a sensitive and non-invasive biomarker for real-time monitoring of HF treatment responses. The integration of wearable HRV monitoring with machine learning enables personalized HF management, with a focus on identifying and prioritizing high-risk patients for early intervention, thereby reducing readmission rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc完成签到,获得积分10
1秒前
1秒前
wanci应助爱听歌的菠萝采纳,获得10
1秒前
Lucas应助tcf采纳,获得10
2秒前
2秒前
llkk完成签到,获得积分10
2秒前
玩命做研究完成签到 ,获得积分10
3秒前
北冰石完成签到,获得积分10
3秒前
明天太好完成签到,获得积分10
3秒前
3秒前
3秒前
Ava应助鳄鱼采纳,获得10
4秒前
延米完成签到,获得积分20
4秒前
会武功的阿吉完成签到,获得积分10
6秒前
Jasper应助Eric采纳,获得10
6秒前
6秒前
传奇3应助坚定岂愈采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
能干忆之完成签到 ,获得积分10
8秒前
zy关闭了zy文献求助
9秒前
萧秋灵完成签到,获得积分10
10秒前
Lynn完成签到,获得积分10
11秒前
天天完成签到,获得积分10
11秒前
12秒前
13秒前
瘦瘦发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
16秒前
Liu完成签到,获得积分20
17秒前
Mipaa发布了新的文献求助10
17秒前
次我完成签到,获得积分10
17秒前
17秒前
猪小屁发布了新的文献求助30
18秒前
18秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3855022
求助须知:如何正确求助?哪些是违规求助? 3397728
关于积分的说明 10603438
捐赠科研通 3119507
什么是DOI,文献DOI怎么找? 1719350
邀请新用户注册赠送积分活动 828133
科研通“疑难数据库(出版商)”最低求助积分说明 777316