A Review of Off-Road Datasets, Sensor Technologies and Terrain Traversability Analysis

地形 计算机科学 人工智能 计算机视觉 遥感 地理 地图学
作者
Hannah Musau,Denis Ruganuza,Debbie Indah,Arthur Mukwaya,Nana Kankam Gyimah,Ashish Patil,Mayuresh Bhosale,Prakhar Gupta,Judith Mwakalonge,Yunyi Jia,Dariusz Mikulski,David Grabowsky,Jae Dong Hong,Saidi Siuhi
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-8339
摘要

<div class="section abstract"><div class="htmlview paragraph">Autonomous ground navigation has advanced significantly in urban and structured environments, supported by the availability of comprehensive datasets. However, navigating complex and off-road terrains remains challenging due to limited datasets, diverse terrain types, adverse environmental conditions, and sensor limitations affecting vehicle perception. This study presents a comprehensive review of off-road datasets, integrating their applications with sensor technologies and terrain traversability analysis methods. It identifies critical gaps, including class imbalances, sensor performance under adverse conditions, and limitations in existing traversability estimation approaches. Key contributions include a novel classification of off-road datasets based on annotation methods, providing insights into scalability and applicability across diverse terrains. The study also evaluates sensor technologies under adverse conditions and proposes strategies for incorporating event-based and hyperspectral cameras to enhance perception systems. Additionally, we address the lack of unified evaluation metrics by introducing performance qualifiers for assessing perception, planning, and control systems. Finally, a comparison of geometry-based, learning-based, and probabilistic methods for terrain navigability prediction highlights the importance of multi-sensor data integration for improved decision-making. These actionable recommendations aim to guide the development of adaptive and robust autonomous navigation systems, advancing real-world applications in complex off-road environments.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘完成签到,获得积分10
刚刚
Hina完成签到,获得积分10
刚刚
努力熊熊发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
若晨完成签到,获得积分10
3秒前
3秒前
gdh完成签到,获得积分10
4秒前
你帅你有理完成签到,获得积分10
4秒前
7秒前
左丘酬海发布了新的文献求助10
8秒前
彭于晏应助肥子采纳,获得10
8秒前
cdercder应助努力熊熊采纳,获得10
8秒前
8秒前
水分子很忙完成签到,获得积分10
10秒前
美好的从阳完成签到,获得积分20
10秒前
脑洞疼应助吃面不加醋采纳,获得10
12秒前
ximixigua完成签到,获得积分10
12秒前
VDC发布了新的文献求助10
13秒前
背后雨柏完成签到 ,获得积分10
14秒前
含蓄的荔枝应助ximixigua采纳,获得10
15秒前
bkagyin应助wenze采纳,获得10
15秒前
李健应助高贵冷松采纳,获得10
16秒前
scenery0510完成签到,获得积分10
17秒前
小大董完成签到,获得积分20
18秒前
公主小妹发布了新的文献求助10
20秒前
20秒前
20秒前
尔安完成签到,获得积分20
21秒前
溪水完成签到,获得积分10
22秒前
jiw完成签到,获得积分10
22秒前
善学以致用应助研友_LB3X9n采纳,获得20
22秒前
25秒前
张小哥12发布了新的文献求助10
25秒前
左丘酬海发布了新的文献求助10
26秒前
华仔应助xiaoqianqian174采纳,获得10
26秒前
27秒前
帮主哥哥应助岳小龙采纳,获得30
28秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823348
求助须知:如何正确求助?哪些是违规求助? 3365778
关于积分的说明 10437415
捐赠科研通 3084906
什么是DOI,文献DOI怎么找? 1697037
邀请新用户注册赠送积分活动 816181
科研通“疑难数据库(出版商)”最低求助积分说明 769437