动力学
扩散
电场
材料科学
领域(数学)
化学动力学
纳米技术
化学物理
化学
化学工程
工程物理
结晶学
物理化学
热力学
物理
工程类
数学
量子力学
纯数学
作者
Jingtian Zeng,Wenxing Miao,Danyang Wang,Chenhui Yan,Zhe Zhang,Hui Peng,Guofu Ma,Ziqiang Lei
标识
DOI:10.1021/acssuschemeng.5c06347
摘要
The sluggish Mg2+ diffusion kinetics and insufficient structural stability in conventional intercalation-type materials necessitate the development of high-performance cathode materials to advance rechargeable magnesium batteries (RMBs). Herein, we propose heterointerface engineering of VS4 nanospheres in situ self-confined and anchored on a conductive Ti3C2 MXene framework (VS4@Ti3C2) to achieve fast Mg2+ diffusion kinetics. The unique design of the VS4@Ti3C2 heterointerface capitalizes on the large interchain spacing and V3+ self-doping in VS4 to facilitate Mg2+ storage, while the Ti3C2 substrate alleviates structural stress, enhances electron transport, and forms a built-in electric field at the heterointerface to accelerate ion migration. To validate the interfacial interaction mechanism, density functional theory (DFT) calculations were employed to reveal the optimized Mg2+ adsorption energy (−1.134 eV) at the heterointerface through charge redistribution and covalent V–C bond formation, accompanied by reduced diffusion barriers and mitigated structural collapse of VS4 during energy storage. Consequently, the VS4@Ti3C2 composite demonstrates a high reversible capacity of 396.5 mAh g–1 at 50 mA g–1 after activation, exceptional rate capability (121.6 mAh g–1 at 1 A g–1), and stable cycling over 1000 cycles. This study extends MXene-based cathode heterointerface engineering, establishing a versatile strategy for high-energy-density RMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI