From Formability to Bandgap: Machine Learning Accelerates the Discovery and Application of Perovskite Materials

钙钛矿(结构) 成形性 材料科学 机器学习 人工智能 工作流程 带隙 计算机科学 纳米技术 光电子学 工程类 化学工程 冶金 数据库
作者
Shiyan Wang,Chaopeng Liu,Wen Sheng Hao,Yanling Zhuang,Xianjun Zhu,Longlu Wang,Xianghong Niu,Shujuan Liu,Bing Chen,Qiang Zhao
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c07494
摘要

Perovskite materials are considered promising candidates for applications in solar cells, photodetectors, catalysts, and light-emitting diodes, owing to their exceptional physicochemical and structural properties. Recently, the integration of machine learning into perovskite research has revolutionized the discovery and optimization process by overcoming the limitations of traditional trial-and-error methods and computationally intensive first-principles calculations. This review examines the role of machine learning in predicting perovskite properties and advancing their practical applications. First, the representative literature and the development trend of machine learning in perovskite materials in recent years were organized and analyzed. Second, the workflow of machine learning for perovskite materials was delineated, accompanied by a brief introduction to the fundamental algorithms. Third, by analyzing the structure and composition of perovskite materials, the role of machine learning in accelerating the discovery of perovskites, particularly in predicting formability and bandgap, is detailed. Finally, four practical applications of machine learning on perovskite materials were presented, along with an innovative proposal of the potential challenges and future directions of machine learning in the field of perovskite materials. Overall, this review aims to provide comprehensive insights and practical guidance for perovskite research, fostering the further development of machine learning-accelerated discovery and application of perovskite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助机智宛秋采纳,获得100
1秒前
1秒前
浙大波波完成签到 ,获得积分10
1秒前
阿瑞发布了新的文献求助10
1秒前
1秒前
2秒前
谢建国完成签到,获得积分10
2秒前
gui完成签到,获得积分10
2秒前
2秒前
佳佳李发布了新的文献求助10
2秒前
哭泣茗完成签到,获得积分10
3秒前
透明人完成签到,获得积分10
3秒前
3秒前
3秒前
炙热怜寒发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
赫连紫发布了新的文献求助10
5秒前
席鸿涛发布了新的文献求助10
5秒前
5秒前
lxx发布了新的文献求助40
6秒前
哇塞发布了新的文献求助10
6秒前
6秒前
6秒前
英姑应助雪落你看不见采纳,获得10
6秒前
victorchen发布了新的文献求助10
7秒前
111完成签到,获得积分10
7秒前
wop111应助虎虎采纳,获得20
7秒前
8秒前
快乐紫蓝发布了新的文献求助10
8秒前
wave完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
顾矜应助qwepirt采纳,获得10
8秒前
飘逸小笼包完成签到,获得积分10
8秒前
查到文献了吗完成签到,获得积分10
9秒前
科研通AI6应助111采纳,获得10
9秒前
9秒前
微昆界发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
饲料原料图鉴与质量控制手册 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4864317
求助须知:如何正确求助?哪些是违规求助? 4157679
关于积分的说明 12890293
捐赠科研通 3910584
什么是DOI,文献DOI怎么找? 2148152
邀请新用户注册赠送积分活动 1166892
关于科研通互助平台的介绍 1068971