Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric analyses

参数统计 计算机科学 参数化模型 机器学习 人工智能 工业工程 工程类 数学 统计
作者
Mohammad Amran Uddin,Md. Habibur Rahman Sobuz,Md. Kawsarul Islam Kabbo,Md. Kanan Chowdhury Tilak,Ratan Lal,Md. Selim Reza,Fahad Alsharari,Mahmoud Abd El-Mongy,Masuk Abdullah
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41598-025-11601-x
摘要

The construction sector is proactively working to minimize the environmental impact of cement manufacturing by adopting alternative cementitious substances and cutting carbon emissions tied to concrete. This study investigates the viability of using waste industrial materials as a replacement of cement in concrete mixes. The primary goal is to predict the compressive strength of waste-incorporated concrete by evaluating the effects of materials such as cement, fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), metakaolin (MK), water usage, aggregate levels, and superplasticizer dosages. A total of 441 data entries were sourced from various publications. Multiple machine learning techniques, such as light gradient boosting (LGB), extreme gradient boosting (XGB), and decision trees (DT), along with hybrid approaches like XGB-LGB and XGB-DT, were utilized to study how these variables influence compressive strength. The dataset was partitioned into training and testing, and statistical tools were employed to assess the correlation between input variables and strength. Model accuracy was gauged using metrics such as mean absolute percentage error (MAPE), root mean square error (RMSE), and the coefficient of determination (R2). Among the models, the XGB and DT approach delivered the highest precision, with an R2 of 0.928 in the training stage. Among hybrid models, XGB-DT exhibited a balanced performance having R2 value of 0.907 and 0.785 for training and testing phase. Additionally, SHAP (SHapley Additive exPlanations) and partial dependence plots (PDP) were employed to pinpoint the optimal ranges for each variable's contribution to the improvement of compressive strength. SHAP and PDP analyses identified coarse aggregate, superplasticizers, water and cement content have high influence on model's output. Additionally, 150-200 kg/m3 of GGBFS as key factors for optimizing compressive strength. The study concludes that the hybrid models along with the single models, can effectively forecast the compressive strength of concrete incorporating industrial byproducts, assisting the construction industry in efficiently evaluating material properties and understanding the influence of various input factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到,获得积分10
1秒前
大个应助QQ星采纳,获得10
1秒前
完美世界应助xixi采纳,获得10
2秒前
2秒前
啾啾咪咪完成签到,获得积分10
2秒前
3秒前
tent01发布了新的文献求助10
3秒前
李健应助wenxianxiazai123采纳,获得10
6秒前
科研通AI6应助科研小锄头采纳,获得10
6秒前
苹果音响应助WANDour采纳,获得10
6秒前
清爽山河完成签到 ,获得积分10
7秒前
努力学习发布了新的文献求助20
7秒前
Fairy发布了新的文献求助10
10秒前
10秒前
sober完成签到,获得积分10
12秒前
12秒前
yousheng完成签到,获得积分10
13秒前
不会写完成签到,获得积分10
14秒前
香蕉觅云应助19554133922采纳,获得10
14秒前
ssf发布了新的文献求助30
14秒前
lyuyl完成签到,获得积分10
15秒前
like411发布了新的文献求助10
15秒前
16秒前
瑾瑜关注了科研通微信公众号
17秒前
SciGPT应助sober采纳,获得10
18秒前
xixi发布了新的文献求助10
18秒前
王一博完成签到,获得积分10
18秒前
19秒前
Eternity完成签到,获得积分10
19秒前
细腻怜翠关注了科研通微信公众号
19秒前
明天会更好完成签到,获得积分20
20秒前
20秒前
xxfsx应助科研通管家采纳,获得10
20秒前
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
xxfsx应助科研通管家采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543