Building energy prediction in a changing climate: an interpretable machine learning approach

能量(信号处理) 机器学习 人工智能 计算机科学 环境科学 工程类 数学 统计
作者
Xinyi Li,Eugénio Rodrigues,Chenqiu Du
出处
期刊:Building and Environment [Elsevier]
卷期号:283: 113420-113420
标识
DOI:10.1016/j.buildenv.2025.113420
摘要

Currently, the consideration of climate change and the interpretation of machine learning-based building energy prediction models are often limited to a specific building function. This study extends the interpretable machine learning approach to various building functions while considering the impacts of climate change. To generate a cooling energy use intensity dataset, Latin hypercube sampling, and physical method simulations are integrated, with future climate data morphed from an ensemble of Coupled Model Intercomparison Project Phase 6 results. Four machine learning models are developed for cooling energy prediction and subsequently interpreted using SHapley Additive exPlanations. The results from the Haikou case study demonstrate that machine learning models offer accurate and exponentially faster alternatives to computer dynamic simulation software for cooling energy prediction. Support vector regression exhibits the highest accuracy, achieving normalized mean absolute error, normalized root-mean-square error, mean absolute percentage error, and coefficient of determination of 6.29 %, 11.64 %, 6.52 %, and 95.03 %, respectively. Feature importance rankings vary while maintaining consistency across different models. The cooling coefficient of performance, lighting gain, compactness ratio, and window-towall ratio are essential features for a building’s cooling energy use intensity, while the U-values of the wall, roof, and window are among the least influential. All models perceive climate change as having a growing positive influence on buildings’ cooling energy use intensity. The interpretable machine learning models developed in this study provide valuable tools for building design and retrofit, empowering building professionals and the general public to pursue sustainable buildings for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
13233923172完成签到,获得积分10
2秒前
Criminology34给hu970的求助进行了留言
2秒前
2秒前
2秒前
3秒前
小二郎应助旦皋采纳,获得10
3秒前
4秒前
武雨寒发布了新的文献求助10
4秒前
桥南给桥南的求助进行了留言
4秒前
啊啊啊啊轩完成签到,获得积分10
5秒前
香蕉觅云应助渴乐采纳,获得10
5秒前
6秒前
8秒前
8秒前
Amazong发布了新的文献求助10
8秒前
英俊的铭应助yyyyy语言采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
谦让的映容关注了科研通微信公众号
10秒前
行路人完成签到,获得积分10
10秒前
Orange应助可爱凤梨采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
爆米花应助Lo采纳,获得10
11秒前
健忘的金完成签到 ,获得积分10
12秒前
我是老大应助CNYDNZB采纳,获得10
12秒前
Jessie完成签到,获得积分10
13秒前
852应助瘦成闪电大圆脸采纳,获得10
13秒前
godvcc发布了新的文献求助30
15秒前
彩色不评发布了新的文献求助10
15秒前
15秒前
YunJ完成签到 ,获得积分10
16秒前
颜琛发布了新的文献求助20
18秒前
19秒前
量子星尘发布了新的文献求助30
19秒前
20秒前
Amazong完成签到,获得积分10
22秒前
24秒前
wyd222完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582