亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ALPD-Net: a wild licorice detection network based on UAV imagery

计算机科学 人工智能 模式识别(心理学) 合并(版本控制) 精确性和召回率 地形 地理 地图学 情报检索
作者
Jing Yang,Huaibin Qin,Jian‐Guo Dai,Guoshun Zhang,Miaomiao Xu,Yuan Qin,Jinglong Liu
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fpls.2025.1617997
摘要

Introduction Licorice has significant medicinal and ecological importance. However, prolonged overharvesting has resulted in twofold damage to wild licorice resources and the ecological environment. Thus, precisely determining the distribution and growth condition of wild licorice is critical. Traditional licorice resource survey methods are unsuitable for complex terrain and do not meet the requirements of large-scale monitoring. Methods In order to solve this problem, this study constructs a new dataset of wild licorice that was gathered using Unmanned Aerial Vehicle (UAV) and proposes a novel detection network named ALPD-Net for identifying wild licorice. To improve the model’s performance in complex backgrounds, an Adaptive Background Suppression Module (ABSM) was designed. Through adaptive channel space and positional encoding, background interference is effectively suppressed. Additionally, to enhance the model’s attention to licorice at different scales, a Lightweight Multi-Scale Module (LMSM) using multi-scale dilated convolution is introduced, significantly reducing the probability of missed detections. At the same time, a Progressive Feature Fusion Module (PFFM) is developed, where a weighted self-attention fusion strategy is employed to effectively merge detailed and semantic information from adjacent layers, thereby preventing information loss or mismatches. Results and discussion The experimental results show that ALPD-Net achieves good detection accuracy in wild licorice identification, with precision 73.3%, recall 76.1%, and mean Average Precision at IoU=0.50 (mAP50) of 79.5%. Further comparisons with mainstream object detection models show that ALPD-Net not only provides higher detection accuracy for wild licorice, but also dramatically reduces missed and false detections. These features make ALPD-Net a potential option for large-scale surveys and monitoring of wild licorice resources using UAV remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王子完成签到 ,获得积分10
3秒前
YifanWang应助潇潇雨歇采纳,获得10
3秒前
6秒前
NexusExplorer应助铭铭采纳,获得10
6秒前
科目三应助清风采纳,获得10
7秒前
8秒前
9秒前
Spinnin完成签到,获得积分10
9秒前
Alphaz9918完成签到,获得积分10
10秒前
慕青应助wzzznh采纳,获得10
11秒前
舒服的牛排完成签到 ,获得积分10
11秒前
13秒前
如沐春风发布了新的文献求助10
13秒前
13秒前
13秒前
null重新开启了张zhang文献应助
15秒前
ss发布了新的文献求助10
16秒前
YifanWang应助潇潇雨歇采纳,获得10
17秒前
清风发布了新的文献求助10
19秒前
21秒前
23秒前
24秒前
24秒前
wzzznh发布了新的文献求助10
24秒前
30秒前
哲别发布了新的文献求助10
30秒前
infinite完成签到,获得积分10
31秒前
天凉王破完成签到 ,获得积分10
31秒前
科研通AI6应助ss采纳,获得10
33秒前
33秒前
firesquall完成签到,获得积分10
34秒前
珍珠完成签到 ,获得积分10
34秒前
小蘑菇应助路过采纳,获得10
39秒前
woy031222完成签到 ,获得积分10
39秒前
标致小伙发布了新的文献求助10
42秒前
时不言完成签到 ,获得积分10
43秒前
43秒前
44秒前
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611845
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890131
捐赠科研通 4727427
什么是DOI,文献DOI怎么找? 2545932
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236