Multiscale Attention Large Kernel Convolutional Neural Network for Rolling Bearing Fault Diagnosis in Noise Environment

卷积神经网络 计算机科学 断层(地质) 方位(导航) 核(代数) 噪音(视频) 人工智能 人工神经网络 模式识别(心理学) 地质学 数学 组合数学 图像(数学) 地震学
作者
Sa Ning,Xiaomin Zhu,Qianxia Ma,S.F. Jiao,Runtong Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ae0359
摘要

Abstract Rolling bearings, as one of the important sources of faults in various mechanical equipment, play a significant role in engineering applications for diagnosing bearing faults in noisy environments. In light of the limited diagnostic precision and substantial computational demands associated with traditional deep learning fault diagnosis methods in noisy conditions, a novel multiscale attention large kernel convolutional neural network (SJ-CNN) model is introduced. The multiscale learning strategy uses convolution kernels of different sizes to capture features at different scales and extract features that are not affected by noise at a specific scale. By combining multiscale learning techniques with large kernel convolution operations, the model achieves a wider perception domain and can identify key fault features even when the original signal is distorted by noise. Furthermore, an adaptive attention module is designed to reassign adaptive weights to each scale to improve the attention to fault information. Additionally, two SJ-CNN variants are utilized: the first SJ-CNN (SJ-1-CNN), which excels in diagnostic accuracy and is particularly advantageous for diagnosing bearings in intricate settings; and the second SJ-CNN (SJ-2-CNN), which achieves a lightweight model and reduces significant computational costs. The effectiveness of this approach has been validated using the bearing datasets from Paderborn University (PU) and the Spectra Quest (SQ) experimental platform. Specifically, under strong noise conditions, the diagnostic accuracy of SJ-CNN has improved by 7.50% on average, which is superior to that of existing state-of-the-art methods. The code will be open in https://github.com/su-yibei/fault-diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llhh2024发布了新的文献求助10
1秒前
李惊韬发布了新的文献求助10
1秒前
开胃萝卜应助yangkang采纳,获得10
1秒前
尊敬小馒头完成签到 ,获得积分10
2秒前
chunyan_sysu发布了新的文献求助10
2秒前
baifeng完成签到,获得积分10
2秒前
852应助搞怪斑马采纳,获得10
3秒前
ybk666发布了新的文献求助10
3秒前
cincrady完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
香蕉觅云应助清秀芝麻采纳,获得10
4秒前
温言叮叮铛完成签到,获得积分10
5秒前
李惊韬完成签到,获得积分10
7秒前
不想干活应助lml采纳,获得10
7秒前
21完成签到,获得积分10
7秒前
六芒星发布了新的文献求助20
8秒前
iu完成签到,获得积分10
8秒前
yoonkk完成签到,获得积分10
9秒前
白昼完成签到,获得积分10
9秒前
11秒前
碧蓝半梦应助zmj采纳,获得10
11秒前
11秒前
XingRang完成签到,获得积分10
12秒前
司空豁应助min2min采纳,获得10
14秒前
songcy7发布了新的文献求助10
17秒前
17秒前
脑洞疼应助白昼采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
zmj完成签到,获得积分10
21秒前
22秒前
搞怪斑马发布了新的文献求助10
22秒前
zhangmin发布了新的文献求助10
22秒前
万老头发布了新的文献求助10
23秒前
自觉小凡发布了新的文献求助20
23秒前
24秒前
kk完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206