Fusion of Satellite Imagery and Convection Features for Tropical Cyclone Intensity Short‐Term Prediction

热带气旋 期限(时间) 卫星 气象学 卫星图像 强度(物理) 遥感 气候学 环境科学 融合 地质学 地理 物理 语言学 哲学 量子力学 天文
作者
Wei Tian,Yuanyuan Chen,Haifeng Xu,Liguang Wu,Yonghong Zhang,Chunyi Xiang,Shifeng Hao
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:130 (14)
标识
DOI:10.1029/2024jd041930
摘要

Abstract Tropical cyclones (TCs) are among the most impactful extreme disasters affecting humanity, and TC forecasting has become a crucial research area. Addressing the current issues of low utilization of infrared imagery information and insufficient extraction of domain knowledge, we employ objective techniques to extract convective features related to cloud organization from infrared imagery. These features, along with satellite imagery and historical intensity values, are selected as model inputs. This paper introduces a deep learning model designed for the short‐term prediction of TC intensity in the Northwest Pacific by fusing satellite imagery and convective features (TCISP‐fusion). We developed a spatiotemporal feature extraction module to capture high‐level features from the spatio‐temporal sequences of satellite imagery and convective features. Additionally, we introduced a spatiotemporal feature fusion module to integrate asymmetrically distributed convective features while minimizing information loss during feature extraction. Furthermore, we applied the Laplacian Pyramid Image Fusion algorithm to effectively combine observations from the infrared (IR) and water vapor (WV) channels. This method captures large‐scale cloud system structures and retains small‐scale detailed features, generating high‐contrast fused imagery and reducing the complexity of input data. The TCISP‐fusion model achieves a root mean square error of 10.87 kt for 24‐hr intensity prediction of western North Pacific TCs. Compared to traditional and mainstream methods, our model achieves comparable accuracy while significantly reducing the required human and material resources. The data used ensure real‐time applicability, making it highly valuable for operational applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SimonLee发布了新的文献求助10
2秒前
2秒前
至幸完成签到,获得积分10
2秒前
3秒前
Yule完成签到,获得积分10
4秒前
5秒前
石头完成签到,获得积分10
6秒前
丘比特应助zuo采纳,获得10
7秒前
stars完成签到,获得积分10
7秒前
8秒前
HIT_C发布了新的文献求助10
9秒前
10秒前
10秒前
可爱的莫言完成签到,获得积分20
10秒前
华仔应助Yule采纳,获得10
10秒前
击飞发布了新的文献求助10
11秒前
CodeCraft应助解耷采纳,获得10
11秒前
白白完成签到,获得积分10
11秒前
12秒前
12秒前
TearMarks发布了新的文献求助10
12秒前
mostspecial完成签到,获得积分10
12秒前
Betty完成签到,获得积分10
12秒前
mmyhn发布了新的文献求助10
13秒前
13秒前
jinyu完成签到,获得积分10
14秒前
14秒前
14秒前
lihjlhigoiupi完成签到,获得积分20
14秒前
14秒前
15秒前
华仔应助SimonLee采纳,获得10
15秒前
lxl123456完成签到,获得积分10
16秒前
Jasper应助培培采纳,获得10
16秒前
击飞完成签到,获得积分10
17秒前
QHz发布了新的文献求助10
18秒前
马二二关注了科研通微信公众号
18秒前
lihjlhigoiupi发布了新的文献求助30
19秒前
欣喜羊青发布了新的文献求助10
19秒前
曲奇发布了新的文献求助10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133351
求助须知:如何正确求助?哪些是违规求助? 3670282
关于积分的说明 11605942
捐赠科研通 3366713
什么是DOI,文献DOI怎么找? 1849688
邀请新用户注册赠送积分活动 913255
科研通“疑难数据库(出版商)”最低求助积分说明 828523