微粒
还原(数学)
气候变化
环境科学
空气质量指数
空气污染
碳纤维
控制(管理)
环境经济学
计算机科学
空气污染物
气象学
化学
人工智能
生态学
物理
复合数
生物
数学
经济
有机化学
算法
几何学
作者
Xu Han,Jiahao Huang,Dongheng Zhao,Zhang Zhang,Junbo Huang,Feng Wang,Jin‐Xing Liu,Shuai Jiang,Yinchang Feng,Shaojie Song,Guoliang Shi
摘要
Abstract Air pollution and climate change, driven by fine particulate matter (PM 2.5 ) and carbon dioxide (CO 2 ), present critical challenges to human survival. Understanding the interaction between PM 2.5 control and carbon reduction‐specifically, how mitigating PM 2.5 sources impacts CO 2 levels and vice versa‐is essential for effective policy‐making. To address this, we developed an Interpretable machine learning (ML) and source apportionment (IMSA) framework. The framework screens pollutant sources for PM 2.5 and CO 2 , and calculates their contributions, revealing that industrial emissions (IE) (11%, 29%), vehicle exhaust (VE) (13%, 19%), and coal combustion (19%, 15%) are major shared sources. By integrating interpretable ML methods, IMSA uncovers interaction effects, showing that reducing IE significantly lowers CO 2 , while targeting VE more effectively reduces PM 2.5 . The IMSA framework provides critical insights for co‐beneficial strategies to improve air quality and mitigate climate change.
科研通智能强力驱动
Strongly Powered by AbleSci AI