Usability of large language models for building construction safety risk assessment

可用性 风险评估 利克特量表 风险分析(工程) 风险管理 职业安全与健康 独创性 比例(比率) 工程类 计算机科学 知识管理 心理学 业务 医学 计算机安全 病理 量子力学 社会心理学 人机交互 物理 发展心理学 创造力 财务
作者
Mustafa Oral,Özge Alboga,Serkan Aydınlı,Ercan Erdiş
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-08-2024-1143
摘要

Purpose Risk assessment is an approach that involves identifying potential workplace risks and determining the necessary precautions to reduce their impact on workers. The advent of artificial intelligence (AI) technology in recent years has greatly benefited safety experts in their assessments of risks. Large language models (LLMs), such as ChatGPT, may provide significant advantages in occupational safety professionals’ risk assessment processes. LLMs enable them to quickly access information, generate reports, analyze data and provide recommendations thanks to their natural language processing capability. This study aims to evaluate the usability of LLMs as a decision-support tool for risk assessments in building construction. Design/methodology/approach First, risks and precautions were defined for 12 work items in building construction. Subsequently, ten experts and ChatGPT were requested to evaluate the risks based on their level of importance using a five-point Likert scale. The similarity of the responses was calculated using the Modified Manhattan Distance. Next, the precautionary choices made by the experts and ChatGPT were compared. Findings It was found that the LLM provided similar answers to the experts in terms of risk scores and precaution selection. Nevertheless, the similarity value of ChatGPT responses surpasses the similarity value of expert responses. Originality/value This study enhances the existing body of knowledge and provides valuable insights to industry stakeholders by showcasing the effectiveness of LLMs in evaluating occupational health and safety hazards. Moreover, to the best of our knowledge, this study represents one of the initial attempts to evaluate occupational safety and health risks with ChatGPT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助荔枝味西柚采纳,获得10
2秒前
3秒前
xiaojiezhang发布了新的文献求助30
4秒前
荼白完成签到 ,获得积分10
8秒前
领导范儿应助ran采纳,获得10
8秒前
忆婩发布了新的文献求助10
9秒前
10秒前
Owen应助zhj采纳,获得10
11秒前
11秒前
orixero应助笨笨薯片采纳,获得10
13秒前
试验南瓜完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
不爱吃西葫芦完成签到 ,获得积分0
16秒前
jatwing发布了新的文献求助10
16秒前
qmhx发布了新的文献求助10
17秒前
19秒前
lllll发布了新的文献求助10
21秒前
科目三应助jatwing采纳,获得10
21秒前
zyiyi发布了新的文献求助10
22秒前
23秒前
23秒前
闪闪雁兰应助xiaojiezhang采纳,获得30
25秒前
所所应助则则采纳,获得10
26秒前
wenhui发布了新的文献求助10
27秒前
jatwing完成签到,获得积分10
30秒前
bkagyin应助zyiyi采纳,获得10
30秒前
SciGPT应助Bowingyang采纳,获得10
31秒前
星辰大海应助杉杉采纳,获得10
31秒前
wanci应助清秀的弼采纳,获得10
32秒前
32秒前
NexusExplorer应助老木虫采纳,获得10
33秒前
善学以致用应助S1采纳,获得10
34秒前
36秒前
36秒前
36秒前
Spiritual完成签到,获得积分10
36秒前
康舟发布了新的文献求助10
37秒前
bbll完成签到,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147398
求助须知:如何正确求助?哪些是违规求助? 3684157
关于积分的说明 11640120
捐赠科研通 3378060
什么是DOI,文献DOI怎么找? 1853932
邀请新用户注册赠送积分活动 916302
科研通“疑难数据库(出版商)”最低求助积分说明 830248