Attentive Boundary-Aware Fusion for Defect Semantic Segmentation Using Transformer

分割 计算机科学 人工智能 像素 边界(拓扑) 模式识别(心理学) 图像分割 变压器 背景(考古学) 计算机视觉 班级(哲学) 特征(语言学) 数据挖掘 数学 工程类 古生物学 哲学 数学分析 电压 电气工程 生物 语言学
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:16
标识
DOI:10.1109/tim.2023.3271723
摘要

Defect semantic segmentation is a pixel-level inspection technique to guarantee the quality of various products. It can obtain the precise location of defects by assigning a class label to each image pixel. Due to the confusing appearance of various defects, most existing defect semantic segmentation methods still suffer from the problem of intra-class difference and inter-class indiscrimination. To tackle these challenges, we propose an attentive boundary-aware transformer framework, namely ABFormer, for segmenting different types of defects. Specifically, we propose a split-attention boundary-aware fusion (SABF) to split and integrate boundary and context features with two different attention modules. It can enrich and fuse the feature maps more efficiently. Moreover, we propose a boundary-aware spatial attention module (BSAM) to capture the spatial interdependencies between the positions of boundary features and context features. This module can enhance the consistency of defect features of the same class for solving the intra-class difference problem. Furthermore, we propose a boundary-aware channel attention module (BCAM) to model the semantic relationship between the channels of boundary features and context features. This module can reinforce the discrimination between defect features of different classes for handling the inter-class indiscrimination problem. Experimental results on three defect semantic segmentation datasets, namely NEU-Seg, MT-Defect, and MSD, demonstrate that our proposed method outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心神依然发布了新的文献求助10
3秒前
李宝刚完成签到,获得积分10
5秒前
狗咚嘻完成签到,获得积分10
7秒前
a9902002完成签到 ,获得积分10
7秒前
笑点低的飞扬完成签到 ,获得积分10
9秒前
13秒前
13秒前
慢慢的地理人完成签到,获得积分10
14秒前
14秒前
Logan完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
33ovo完成签到 ,获得积分10
16秒前
王木木发布了新的文献求助10
18秒前
小钉子发布了新的文献求助10
18秒前
19秒前
李爱国应助顺心初蓝采纳,获得10
20秒前
forest完成签到,获得积分10
21秒前
gkk发布了新的文献求助20
22秒前
Cherish完成签到,获得积分10
24秒前
25秒前
默默咖啡豆完成签到,获得积分10
27秒前
28秒前
28秒前
张张发布了新的文献求助10
32秒前
32秒前
zho发布了新的文献求助10
34秒前
123发布了新的文献求助10
34秒前
我是老大应助李丽玲采纳,获得20
34秒前
福宝发布了新的文献求助10
34秒前
35秒前
传奇3应助wumumu采纳,获得10
39秒前
456完成签到,获得积分10
40秒前
42秒前
cj关注了科研通微信公众号
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757