In silico analysis revealed the potential circRNA-miRNA-mRNA regulative network of non-small cell lung cancer (NSCLC)

生物 计算生物学 小RNA 生物信息学 基因 非小细胞肺癌 肺癌 癌症研究 遗传学 A549电池 肿瘤科 医学
作者
Ambritha Balasundaram,C. George Priya Doss
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106315-106315 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.106315
摘要

The primary source of death in the world is non-small cell lung cancer (NSCLC). However, NSCLCs pathophysiology is still not completely understood. The current work sought to study the differential expression of mRNAs involved in NSCLC and their interactions with miRNAs and circRNAs.We utilized three microarray datasets (GSE21933, GSE27262, and GSE33532) from the GEO NCBI database to identify the differentially expressed genes (DEGs) in NSCLC. We employed DAVID Functional annotation tool to investigate the underlying GO biological process, molecular functions, and KEGG pathways involved in NSCLC. We performed the Protein-protein interaction (PPI) network, MCODE, and CytoHubba analysis from Cytoscape software to identify the significant DEGs in NSCLC. We utilized miRnet to anticipate and build interaction between miRNAs and mRNAs in NSCLC and ENCORI to predict the miRNA-circRNA relationships and build the ceRNA regulatory network. Finally, we executed the gene expression and Kaplan-Meier survival analysis to validate the significant DEGs in the ceRNA network utilizing TCGA NSCLC and GEPIA data.We revealed a total of 156 overlapped DEGs (47 upregulated and 109 downregulated genes) in NSCLC. The PPI network, MCODE, and CytoHubba analysis revealed 12 hub genes (cdkn3, rrm2, ccnb1, aurka, nuf2, tyms, kif11, hmmr, ccnb2, nek2, anln, and birc5) that are associated with NSCLC. We identified that these 12 genes encode 12 mRNAs that are strongly linked with 8 miRNAs, and further, we revealed that 1 circRNA was associated with this 5 miRNA. We constructed the ceRNAs network that contained 1circRNA-5miRNAs-7mRNAs. The expression of these seven significant genes in LUAD & LUSC (NSCLC) was considerably higher in the TCGA database than in normal tissues. Kaplan-Meier survival plot reveals that increased expression of these hub genes was related to a poor survival rate in LUAD.Overall, we developed a circRNA-miRNA-mRNA regulation network to study the probable mechanism of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
慕容迎松完成签到,获得积分10
2秒前
打打应助minhhuy采纳,获得10
3秒前
小代完成签到,获得积分10
5秒前
QiongBai520发布了新的文献求助50
5秒前
科研助手6应助帅气凝云采纳,获得10
5秒前
慕容迎松发布了新的文献求助10
5秒前
7秒前
yangman发布了新的文献求助50
8秒前
乔治韦斯莱完成签到 ,获得积分10
9秒前
水菜泽子关注了科研通微信公众号
9秒前
Jro完成签到 ,获得积分10
10秒前
10秒前
顾矜应助摩根采纳,获得10
11秒前
柠檬加冰发布了新的文献求助10
12秒前
帅气凝云完成签到,获得积分10
12秒前
14秒前
15秒前
cy完成签到 ,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
17秒前
残幻应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
卡卡西应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
残幻应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
IMxYang应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
非而者厚应助科研通管家采纳,获得10
19秒前
非而者厚应助科研通管家采纳,获得10
19秒前
卡卡西应助科研通管家采纳,获得20
19秒前
我是老大应助feaxi采纳,获得30
19秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816929
求助须知:如何正确求助?哪些是违规求助? 3360303
关于积分的说明 10407548
捐赠科研通 3078290
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958