亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical resource allocation planning by integrating machine learning and optimization models

计算机科学 工作量 资源配置 机器学习 人工智能 相(物质) 运筹学 数据挖掘 计算机网络 操作系统 工程类 有机化学 化学
作者
Tasquia Mizan,Sharareh Taghipour
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:134: 102430-102430 被引量:14
标识
DOI:10.1016/j.artmed.2022.102430
摘要

Patients' waiting time is a major issue in the Canadian healthcare system. The planning for resource allocation impacts patients' waiting time in medicare settings. This research focuses on the reduction of patients' waiting time by providing better planning for radiological resource allocation and efficient workload distribution. Resource allocation planning is directly related to the number of patient-arrival and it is hard to predict such uncertain parameters in the future time frame. The number of patient-arrival also varies across different modalities and different timeframes which makes the patient-arrival prediction challenging. In this research, a new three-phase solution framework is proposed where a new multi-target machine learning technique is integrated with an optimization model. In the first phase, a novel Ensemble of Pruned Regressor Chain (EPRC) model is developed and trained offline to predict uncertain parameters, such as patients' arrival. The proposed model is then compared with two popular multi-target prediction methods to evaluate the model's accuracy. In the second phase, the trained model is deployed in the real-time environment to forecast patients' arrival, miss Turn Around Time (miss-TAT) rate, and probable workload count. The forecasted data is used in phase three where a new multi-objective optimization model is developed to determine workload allocation. The Weighted-sum method is used to get efficient solutions. The proposed model is deployed in a Canadian healthcare company and evaluated using real-time healthcare data. It is observed in terms of accuracy, the proposed EPRC model performed 10.81 % better compared to the other multi-target models considered in this study. It is also noticed that the forecasting results have a direct impact on the workload distribution, where the proposed model decreases the total workload by approximately 25 %. Besides, the result shows the efficient workload distribution provided by the proposed framework can reduce the average patients' waiting time by 8.17 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
29秒前
酷波er应助王其超采纳,获得10
29秒前
博ge完成签到 ,获得积分10
45秒前
juan完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
王其超发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
脑洞疼应助Estrange采纳,获得10
4分钟前
4分钟前
Estrange发布了新的文献求助10
4分钟前
香蕉觅云应助Estrange采纳,获得10
4分钟前
4分钟前
2159157211发布了新的文献求助10
4分钟前
天天快乐应助科研通管家采纳,获得30
5分钟前
阿冰完成签到 ,获得积分10
5分钟前
天之道发布了新的文献求助10
5分钟前
Hello应助2159157211采纳,获得10
5分钟前
天之道完成签到,获得积分10
5分钟前
2159157211完成签到,获得积分20
5分钟前
5分钟前
英俊的铭应助Logan采纳,获得10
5分钟前
Estrange发布了新的文献求助10
5分钟前
Logan完成签到,获得积分10
5分钟前
5分钟前
Logan发布了新的文献求助10
6分钟前
科研通AI2S应助Estrange采纳,获得10
6分钟前
6分钟前
丸橙发布了新的文献求助30
7分钟前
科研通AI5应助科研通管家采纳,获得80
7分钟前
传奇3应助丸橙采纳,获得10
7分钟前
cy0824完成签到 ,获得积分10
7分钟前
小脸红扑扑完成签到 ,获得积分10
8分钟前
eric888应助妖娃娃采纳,获得500
8分钟前
满意的伊发布了新的文献求助10
8分钟前
满意的伊发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847736
求助须知:如何正确求助?哪些是违规求助? 3390439
关于积分的说明 10561584
捐赠科研通 3110798
什么是DOI,文献DOI怎么找? 1714535
邀请新用户注册赠送积分活动 825272
科研通“疑难数据库(出版商)”最低求助积分说明 775453