已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Impact Load Identification Method Based on Green’s Kernel Function

计算机科学 Tikhonov正则化 核(代数) 反问题 反演(地质) 结构工程 数学优化 算法 控制理论(社会学) 数学 工程类 地质学 人工智能 数学分析 组合数学 构造盆地 古生物学 控制(管理)
作者
Xueqian Zhou,Yishi Xu,Yu Yang,Gang Lu,Huilong Ren
标识
DOI:10.1115/omae2022-81427
摘要

Abstract Ships and offshore platform structures experience complex dynamic loads during their lifetime. Impact loads is one of the types of dynamics loads where the duration of action is very short. The relative velocity between impacting body and the structure being impacted is usually high, and which may have a significant influence on the safety of ship structures. The load, as an input of structure calculation, plays an important role during the calculation progress and directly influences the accuracy of the result. Identification of the loads acting on the structures are important for structure design, analysis of strength, estimation of fatigue life and also data driven models of structures, however, most of these types of loads are difficult to identify. A possible approach is to measure the response of the ship structure, and then identify the location of action and the time histories with load identification techniques. In this study, a Green’s kernel function based time-domain inverse method for estimating the impact load is studied. The Tikhonov regularization method and TSVD method are used to deal with the ill-conditioned problem in the inversion, and the ill-conditionness of the matrix is reduced to a certain extent so as to improve the identification accuracy. An Improved Maxwell-Betti method is used to identify the location of impact load at an unknown position. The proposed method is validated through numerical simulation and experiment for a typical structure used in naval architecture and ocean engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好好好发布了新的文献求助10
刚刚
yc05708发布了新的文献求助10
2秒前
小二郎应助须臾采纳,获得10
2秒前
tom发布了新的文献求助10
3秒前
4秒前
5秒前
优雅山柏发布了新的文献求助10
7秒前
脑洞疼应助别说谎采纳,获得10
7秒前
10秒前
Jasper应助weixiaosi采纳,获得10
13秒前
14秒前
15秒前
李爱国应助科研通管家采纳,获得30
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
Pothos应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
19秒前
陆沉应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
ZQ发布了新的文献求助10
20秒前
Qiuyingzi0711完成签到,获得积分10
20秒前
20秒前
阿眠Aaaaa完成签到,获得积分20
22秒前
汉堡包应助哦哟采纳,获得10
22秒前
ming完成签到 ,获得积分10
23秒前
yc05708完成签到,获得积分10
23秒前
研友_VZG7GZ应助kxm采纳,获得10
26秒前
28秒前
科研通AI5应助大鸟依人采纳,获得10
29秒前
明明发布了新的文献求助20
30秒前
SciGPT应助susancat采纳,获得10
31秒前
34秒前
35秒前
36秒前
科目三应助Yyyyyyyyy采纳,获得30
36秒前
小二郎应助徐一采纳,获得10
36秒前
36秒前
CCC给知更鸟的求助进行了留言
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217