已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An advanced prediction model of shale oil production profile based on source-reservoir assemblages and artificial neural networks

油页岩 石油工程 人工神经网络 储层建模 页岩油 工作流程 生产(经济) 地质学 环境科学 人工智能 计算机科学 经济 宏观经济学 古生物学 数据库
作者
Yazhou Liu,Jianhui Zeng,Juncheng Qiao,Guangqing Yang,Shu'ning Liu,Weifu Cao
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120604-120604 被引量:22
标识
DOI:10.1016/j.apenergy.2022.120604
摘要

Over the past decade, hydrocarbon production from shale oil reservoirs has become increasingly common, and successful shale oil exploration and development depends significantly on the accurate evaluation of the sweet spots. However, different scholars have established different evaluation standards for sweet spots under different geological settings, and it is difficult for these standards to form a universal evaluation standard. The sweet spots should be synonymous with the overall combination of geological, engineering and economic sweet spots. The shale oil production evaluation would be a valid indicator due to the comprehensive combination of the above three perspectives. This paper demonstrates a multidisciplinary data-driven workflow to predict shale oil production through machine learning and quantitative evaluation of geological variables. 48 test sections from 30 exploratory wells in the Lucaogou Formation of the Jimusaer Sag are taken as an example for application demonstration. The proposed 13 geological variables based on source-reservoir assemblage types, source rock quality, reservoir quality, migration dynamics, and conduit conditions realize a systematic and comprehensive characterization of hydrocarbon generation, storage, dynamics, and flow stimulation. Based on the different averaging algorithms in the ANN model, good agreement has been observed between predicted and simulated data for training (R > 0.95) and validation (R > 0.87). Moreover, the geometric and harmonic averaging algorithms are preferentially recommended to characterize reservoir heterogeneity. In unconventional reservoirs, there is no single attribute that can be used to predict success or failure. The training results of the advanced prediction model are better than the other five single reservoir characterization models. On the well J174 dataset, the sweet spot predicted by the model matches well with the oil test results. The increase in liquid hydrocarbon content, mud gas content, TOC and normal faults percentage has positive effects on shale oil production, while the increase in reverse faults percentage has negative effects on shale oil production. This research provides ideas for intelligent prediction of the distribution of sweet spots in unconventional resources, and is also important for the development of intelligent hydrocarbon exploration technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdppkzl完成签到,获得积分20
刚刚
李昀睿发布了新的文献求助10
刚刚
简单灵凡完成签到,获得积分10
3秒前
4秒前
乐乐应助李昀睿采纳,获得10
5秒前
氰空发布了新的文献求助10
6秒前
7秒前
滾滾完成签到,获得积分10
7秒前
fdaqin发布了新的文献求助10
9秒前
左一酱完成签到 ,获得积分10
11秒前
无忧sxt完成签到 ,获得积分10
12秒前
宋笨笨发布了新的文献求助20
13秒前
小竖完成签到 ,获得积分10
14秒前
雨林完成签到,获得积分10
21秒前
Crest发布了新的文献求助10
22秒前
23秒前
FashionBoy应助小粉丝采纳,获得30
28秒前
顾矜应助酶什么幺蛾子采纳,获得10
28秒前
32秒前
学术渣渣发布了新的文献求助10
34秒前
强强1314发布了新的文献求助10
38秒前
汉堡包应助FAN采纳,获得10
39秒前
41秒前
41秒前
小啦啦3082完成签到 ,获得积分10
42秒前
小周发布了新的文献求助10
45秒前
ww发布了新的文献求助10
48秒前
54秒前
55秒前
55秒前
豆兜兜发布了新的文献求助10
59秒前
FAN发布了新的文献求助10
1分钟前
1分钟前
jsdiohfsiodhg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助Equation1019采纳,获得10
1分钟前
1分钟前
ww完成签到,获得积分10
1分钟前
风清扬发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241804
求助须知:如何正确求助?哪些是违规求助? 3775305
关于积分的说明 11855499
捐赠科研通 3430273
什么是DOI,文献DOI怎么找? 1882672
邀请新用户注册赠送积分活动 934673
科研通“疑难数据库(出版商)”最低求助积分说明 841120