Deep Closing: Enhancing Topological Connectivity in Medical Tubular Segmentation

成交(房地产) 分割 图像分割 医学影像学 拓扑(电路) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数学 组合数学 业务 财务
作者
Qian Wu,Yufei Chen,Wei Liu,Xiaodong Yue,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3990-4003 被引量:3
标识
DOI:10.1109/tmi.2024.3405982
摘要

Accurately segmenting tubular structures, such as blood vessels or nerves, holds significant clinical implications across various medical applications. However, existing methods often exhibit limitations in achieving satisfactory topological performance, particularly in terms of preserving connectivity. To address this challenge, we propose a novel deep-learning approach, termed Deep Closing, inspired by the well-established classic closing operation. Deep Closing first leverages an AutoEncoder trained in the Masked Image Modeling (MIM) paradigm, enhanced with digital topology knowledge, to effectively learn the inherent shape prior of tubular structures and indicate potential disconnected regions. Subsequently, a Simple Components Erosion module is employed to generate topology-focused outcomes, which refines the preceding segmentation results, ensuring all the generated regions are topologically significant. To evaluate the efficacy of Deep Closing, we conduct comprehensive experiments on 4 datasets: DRIVE, CHASE DB1, DCA1, and CREMI. The results demonstrate that our approach yields considerable improvements in topological performance compared with existing methods. Furthermore, Deep Closing exhibits the ability to generalize and transfer knowledge from external datasets, showcasing its robustness and adaptability. The code for this paper has been available at: https://github.com/5k5000/DeepClosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eagwda发布了新的文献求助10
刚刚
一米阳光完成签到,获得积分10
刚刚
通城发抛王完成签到,获得积分10
1秒前
香蕉觅云应助健壮涵柳采纳,获得10
2秒前
libo1991发布了新的文献求助10
3秒前
3秒前
yzy完成签到,获得积分10
7秒前
超级的嘉儿完成签到,获得积分10
7秒前
mt发布了新的文献求助10
7秒前
eagwda完成签到,获得积分10
7秒前
8秒前
北宇完成签到,获得积分10
8秒前
8秒前
爆米花应助Cheng采纳,获得10
9秒前
nuth完成签到,获得积分10
10秒前
diorzhang完成签到 ,获得积分10
10秒前
yyds给吹皱一湖春水的求助进行了留言
10秒前
12完成签到 ,获得积分10
12秒前
领导范儿应助通城发抛王采纳,获得10
13秒前
13秒前
内敛诚C完成签到 ,获得积分10
13秒前
财神爷发布了新的文献求助10
14秒前
ovoiii发布了新的文献求助10
15秒前
15秒前
懒虫儿坤发布了新的文献求助10
16秒前
卷心菜完成签到 ,获得积分10
17秒前
17秒前
18秒前
赵雪莲完成签到,获得积分10
20秒前
纯真的白猫完成签到,获得积分10
21秒前
21秒前
黄则已发布了新的文献求助10
21秒前
一一一发布了新的文献求助10
21秒前
赘婿应助JH采纳,获得10
22秒前
balabala发布了新的文献求助10
22秒前
无花果应助顺利毕业采纳,获得10
22秒前
Jasper应助喂喂喂采纳,获得10
22秒前
大豪发布了新的文献求助10
22秒前
微光熠完成签到,获得积分10
22秒前
NexusExplorer应助懒虫儿坤采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537346
求助须知:如何正确求助?哪些是违规求助? 4624899
关于积分的说明 14593747
捐赠科研通 4565427
什么是DOI,文献DOI怎么找? 2502354
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191