InVO4 nanosheets decorated with ZnWO4 nanorods: A novel composite and its enhanced photocatalytic performance under solar light

纳米棒 光催化 带隙 材料科学 纳米复合材料 背景(考古学) 半导体 兴奋剂 钒酸铋 异质结 纳米技术 化学工程 光激发 纳米材料 吸收(声学) 载流子 光电子学 化学 复合材料 催化作用 有机化学 工程类 古生物学 生物 物理 核物理学 激发态
作者
Mohan Rao Tamtam,Ravindranadh Koutavarapu,Jaesool Shim
出处
期刊:Environmental Research [Elsevier BV]
卷期号:227: 115735-115735 被引量:31
标识
DOI:10.1016/j.envres.2023.115735
摘要

InVO4 is the most attractive inorganic new-generation material for advanced scientific research, especially in the fields of energy and environmental science. In theory, this stable, non-toxic, energy-efficient metal vanadate semiconductor is expected to exhibit significant catalytic activity owing to its narrow bandgap energy. However, this has not been achieved in practice because of its inherent defects in terms of the separation and migration of charge carriers. In fact, the exploration of this material is still in its infancy, and more research is needed to improve its efficiency and speed up its commercialization. Band gap engineering using heterojunction formation offers better results than other methods, such as morphological variations and doping efforts. In this context, the present study offers a significant solution substantiated by experimental results. This includes the successful synthesis of a novel nanocomposite of InVO4 nanosheets decorated with ZnWO4 nanorods with a unique improved light absorption ability. Three composites with 26.48–33.85 nm crystal sizes and 11.74–19.98 m2/g surface area were prepared with tailor-made bandgap energies in the range of 2.52–2.97 eV. Furthermore, they produced high photoexcitation currents with low EIS resistance with respect to their constituents. The as-prepared InVO4-based novel catalyst almost completely (98.33%) decomposed tetracycline (TC) antibiotic in just 90 min, proving its high efficacy. The enhanced performance of the novel catalyst is 7.6 times that of InVO4 and 10 times that of ZnWO4. Moreover, the catalyst intake was significantly small (15 mg/100 mL TC solution).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真之桃完成签到,获得积分10
1秒前
nihui完成签到 ,获得积分10
1秒前
3秒前
7秒前
8秒前
真实的火车完成签到,获得积分10
8秒前
李爱国应助LMH采纳,获得10
9秒前
肖恩完成签到,获得积分10
10秒前
Mryuan完成签到,获得积分10
10秒前
12秒前
高兴荔枝发布了新的文献求助10
12秒前
wangbq发布了新的文献求助10
14秒前
阿宝完成签到 ,获得积分0
16秒前
Misea发布了新的文献求助10
17秒前
无敌龙傲天完成签到 ,获得积分10
20秒前
dr0422完成签到 ,获得积分10
29秒前
思源应助Misea采纳,获得10
29秒前
文文文完成签到,获得积分10
30秒前
35秒前
qiao应助jackycas采纳,获得10
37秒前
41秒前
1762571452完成签到,获得积分10
42秒前
45秒前
qiao应助要懒死了hhh采纳,获得10
50秒前
快乐科研发布了新的文献求助10
50秒前
51秒前
共享精神应助高兴荔枝采纳,获得10
52秒前
小陆完成签到,获得积分10
52秒前
54秒前
迷人世开完成签到,获得积分0
55秒前
无辜的蜗牛完成签到 ,获得积分10
55秒前
ZXD1989完成签到 ,获得积分10
55秒前
斯文败类应助Tom的梦想采纳,获得10
59秒前
小陆发布了新的文献求助10
1分钟前
脑洞疼应助快乐科研采纳,获得10
1分钟前
1分钟前
玄之又玄完成签到,获得积分10
1分钟前
1分钟前
Young4399完成签到 ,获得积分10
1分钟前
大树完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549