香芹酚
化学
食品科学
醋酸
超声
溶解度
皂甙
Zeta电位
色谱法
精油
材料科学
纳米技术
生物化学
有机化学
纳米颗粒
医学
替代医学
病理
作者
Louise Thomé Cardoso,Bibiana Alexandre,Fabíola Ayres Cacciatore,Yve Verônica da Silva Magedans,Arthur Germano Fett‐Neto,Renata Vidor Contri,Patrícia da Silva Malheiros
标识
DOI:10.1016/j.foodres.2023.112748
摘要
Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around −30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.
科研通智能强力驱动
Strongly Powered by AbleSci AI