A Review of Deep Learning-Based Anomaly Detection Strategies in Industry 4.0 Focused on Application Fields, Sensing Equipment, and Algorithms

异常检测 计算机科学 鉴定(生物学) 过程(计算) 数据科学 机器学习 数据挖掘 人工智能 植物 生物 操作系统
作者
Adriano Liso,Angelo Cardellicchio,Cosimo Patruno,Massimiliano Nitti,Pierfrancesco Ardino,Ettore Stella,Vito Renò
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 93911-93923 被引量:19
标识
DOI:10.1109/access.2024.3424488
摘要

Anomaly detection is a topic of interest in several areas, ranging from Industry 4.0 to Energy Management, Smart Agriculture, Cybersecurity, and Bioinformatics. In a wide sense, detecting anomalies implies finding samples generated within a process that differs from its standard data generation mechanisms. Identifying these samples is extremely important for a variety of reasons, depending on the specific application and scenario, ranging from the minimization of production costs to maintaining the required safety standards. As such, the increasing availability of wide networks of sensors that yield large amounts of data characterizing the processes under observation allowed the large adoption of deep learning techniques, which proved worthy of attention due to their capability of identifying anomalies with large precision, accuracy and reproducibility. Consequently, there is an extensive need to consolidate research results to provide a common framework to understand the topic and ensure a common foundation to establish future research trends. To respond to this need, this work systematically reviews the state of the art of anomaly detection in Industry 4.0, evaluating gaps in the current knowledge and proposing future directions of interest. To pursue this objective, three main dimensions have been considered: the scenario where the anomaly detection methodologies were applied, the sensing equipment used to gather data characterizing the underlying process, and the algorithm employed to properly interpret the phenomena. The study was conducted following the PRISMA protocol, which allowed the identification of a relevant selection of papers by extracting a meaningful dataset of 78 papers of interest. The analysis highlighted the diffusion of autoencoders in several configurations and application scenarios, highlighting their effectiveness and flexibility for anomaly detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助西门百招采纳,获得10
1秒前
1秒前
CipherSage应助yurig采纳,获得10
2秒前
2秒前
CodeCraft应助幼汁汁鬼鬼采纳,获得10
2秒前
情怀应助学术混子采纳,获得10
2秒前
3秒前
4秒前
陌路完成签到,获得积分10
5秒前
幽默的小之完成签到,获得积分10
5秒前
李健的小迷弟应助zyy采纳,获得10
5秒前
5秒前
keyring完成签到 ,获得积分10
6秒前
6秒前
mz完成签到,获得积分10
6秒前
耶瑟儿发布了新的文献求助10
7秒前
小熊熊发布了新的文献求助10
7秒前
enen发布了新的文献求助10
7秒前
乐乐应助可靠的思烟采纳,获得10
7秒前
8秒前
tianzhen发布了新的文献求助10
8秒前
等待雁桃完成签到,获得积分10
9秒前
Ava应助露露采纳,获得10
10秒前
10秒前
10秒前
白什么冰完成签到,获得积分10
10秒前
苒苒发布了新的文献求助30
11秒前
慕青应助门柱帝采纳,获得10
11秒前
12秒前
寒川厚完成签到,获得积分10
14秒前
15秒前
bkagyin应助夏小安采纳,获得10
15秒前
芍药药发布了新的文献求助10
15秒前
Hilda007应助周周采纳,获得30
16秒前
16秒前
小小云完成签到 ,获得积分10
17秒前
purple完成签到 ,获得积分10
17秒前
17秒前
我不吃葱完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917