The Large Language Model GPT-4 Compared to Endocrinologist Responses on Initial Choice of Antidiabetic Medication under Conditions of Clinical Uncertainty

二甲双胍 医学 糖尿病 药方 肾功能 内科学 苦恼 内分泌学 药理学 临床心理学
作者
James Flory,Jessica S. Ancker,Scott Y. H. Kim,Gilad J. Kuperman,Aleksandr Petrov,Andrew J. Vickers
出处
期刊:Diabetes Care [American Diabetes Association]
被引量:2
标识
DOI:10.2337/dc24-1067
摘要

OBJECTIVE To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. RESEARCH DESIGN AND METHODS This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. RESULTS With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9–17%) of responses, compared with 31% (95% CI 23–39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22–28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4–5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12–36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. CONCLUSIONS In clinical scenarios with no single right answer, GPT-4’s responses were reasonable, but differed from endocrinologists’ responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇宁完成签到 ,获得积分10
1秒前
Lqiang发布了新的文献求助10
1秒前
xing完成签到,获得积分20
2秒前
出门见喜完成签到,获得积分10
2秒前
陈半喆完成签到 ,获得积分10
2秒前
xing发布了新的文献求助10
5秒前
旅游家完成签到 ,获得积分10
5秒前
风中夜天完成签到 ,获得积分10
7秒前
qiuqiu完成签到 ,获得积分10
11秒前
msd2phd完成签到,获得积分10
13秒前
13秒前
14秒前
17秒前
白开水发布了新的文献求助10
18秒前
无非一念发布了新的文献求助10
20秒前
科研废物发布了新的文献求助10
22秒前
Lqiang完成签到,获得积分10
24秒前
无非一念完成签到,获得积分10
26秒前
希望天下0贩的0应助keke采纳,获得10
31秒前
36秒前
37秒前
39秒前
39秒前
Tracy.完成签到,获得积分10
40秒前
白开水完成签到,获得积分10
42秒前
93发布了新的文献求助30
44秒前
NorthWang完成签到,获得积分10
52秒前
52秒前
wenbo完成签到,获得积分0
53秒前
55秒前
55秒前
57秒前
zzq发布了新的文献求助10
58秒前
59秒前
废物自救发布了新的文献求助10
1分钟前
乐观短靴发布了新的文献求助10
1分钟前
立军发布了新的文献求助200
1分钟前
yym完成签到,获得积分10
1分钟前
科研废物完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648