Large Language Model GPT-4 Compared to Endocrinologist Responses on Initial Choice of Glucose-Lowering Medication Under Conditions of Clinical Uncertainty

二甲双胍 医学 糖尿病 药方 肾功能 内科学 苦恼 内分泌学 药理学 临床心理学
作者
James Flory,Jessica S. Ancker,Scott Y. H. Kim,Gilad J. Kuperman,Aleksandr Petrov,Andrew J. Vickers
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:48 (2): 185-192 被引量:10
标识
DOI:10.2337/dc24-1067
摘要

OBJECTIVE To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. RESEARCH DESIGN AND METHODS This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. RESULTS With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9–17%) of responses, compared with 31% (95% CI 23–39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22–28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4–5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12–36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. CONCLUSIONS In clinical scenarios with no single right answer, GPT-4’s responses were reasonable, but differed from endocrinologists’ responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助嘉嘉sone采纳,获得10
刚刚
稳重如萱发布了新的文献求助10
1秒前
1秒前
123完成签到 ,获得积分10
1秒前
1秒前
惊鸿一面完成签到,获得积分10
1秒前
传奇3应助xuedan采纳,获得10
1秒前
2秒前
2秒前
柒tt完成签到,获得积分10
2秒前
今后应助Li采纳,获得10
2秒前
小章发布了新的文献求助10
2秒前
Jing发布了新的文献求助10
2秒前
温柔难敌完成签到,获得积分20
2秒前
3秒前
dxt完成签到,获得积分10
3秒前
3秒前
GXX完成签到,获得积分10
3秒前
3秒前
4秒前
Kay76发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助chigga采纳,获得10
4秒前
金金金关注了科研通微信公众号
5秒前
赘婿应助稳重如萱采纳,获得10
5秒前
ding应助一刀开崂山采纳,获得10
5秒前
5秒前
5秒前
5秒前
海洋发布了新的文献求助10
5秒前
QQ完成签到,获得积分10
5秒前
爆米花应助晚塬采纳,获得10
5秒前
6秒前
任一完成签到,获得积分10
6秒前
勤劳的康乃馨完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162