Joint Bayesian estimation of process and measurement noise statistics in nonlinear Kalman filtering

卡尔曼滤波器 贝叶斯概率 接头(建筑物) 噪音(视频) 统计 非线性系统 计算机科学 估计 过程(计算) 模式识别(心理学) 数学 人工智能 算法 工程类 物理 建筑工程 系统工程 图像(数学) 操作系统 量子力学
作者
Nihan Bilgin,Audrey Olivier
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:223: 111836-111836 被引量:4
标识
DOI:10.1016/j.ymssp.2024.111836
摘要

Bayesian filtering aims at sequentially estimating the states and parameters in nonlinear dynamical systems, and finds applications in a variety of engineering fields. Extended and unscented Kalman filter are popular choices for this purpose as they typically achieve a good trade-off between computational complexity and accuracy, while still quantifying posterior uncertainty. However, the accuracy of the identified states and parameters, both in terms of their posterior mean and variance, is heavily influenced by the assumed statistics of both the process and measurement noise terms. Therefore, learning the noise characteristics becomes an essential aspect of Bayesian filtering, but is non-trivial especially in cases where process and measurement noise statistics are jointly non-identifiable. This article proposes a methodology that decomposes measurement and process noise learning in a fully Bayesian setting. For measurement noise estimation, we improve upon a Bayesian method that leverages conjugacy of the inverse-Wishart distribution with respect to the Gaussian likelihood model. For process noise estimation, Bayesian model averaging is coupled with a mutation scheme to compare the performance of competing models while exploring high-probability regions in the space of the unknown process noise variance. The algorithm is first tested on simple numerical models for both state estimation and parameter learning, highlighting the superior accuracy of the proposed measurement noise correction and the benefits of decoupling process and measurement noise learning in non-identifiable settings. Then we demonstrate the usefulness of this algorithm in more challenging problems, namely identification of a multi-degree-of-freedom system under unmeasured excitation, and modeling of the highly nonlinear response of a full-scale bridge pier using experimental data. • Framework jointly estimates states, parameters and noise statistics in UKF. • Measurement noise estimation leverages approximate conjugacy updates. • Process noise estimation is based on Bayesian model averaging, with mutations. • Handles ill-identifiability of process and measurement noise statistics. • Appropriate for state-input estimation and time-varying parameter identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助包包琪采纳,获得10
1秒前
小象完成签到,获得积分10
1秒前
孔孔完成签到,获得积分10
2秒前
和谐煜祺完成签到,获得积分10
2秒前
啦啦啦完成签到,获得积分10
3秒前
3秒前
打卡下班应助吴家豪采纳,获得10
3秒前
5秒前
5秒前
拉普拉斯妖完成签到,获得积分10
5秒前
晨曦完成签到,获得积分10
5秒前
干净以珊完成签到,获得积分10
5秒前
7秒前
7秒前
xuan发布了新的文献求助10
7秒前
和谐小南完成签到,获得积分10
7秒前
yzy发布了新的文献求助10
8秒前
9秒前
研友_841zXL完成签到,获得积分0
9秒前
9秒前
打打应助weiwei采纳,获得30
10秒前
10秒前
11秒前
11秒前
12秒前
吉吉国王X发布了新的文献求助10
12秒前
赖皮蛇完成签到,获得积分10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
xll发布了新的文献求助10
15秒前
Do完成签到,获得积分10
15秒前
16秒前
踏实从雪完成签到,获得积分10
16秒前
大魔王完成签到,获得积分20
16秒前
狂野书易完成签到,获得积分10
16秒前
珂泐发布了新的文献求助10
17秒前
科研通AI6应助茶博士采纳,获得10
17秒前
NMC发布了新的文献求助10
18秒前
科研通AI5应助迷路的夏之采纳,获得10
20秒前
易酰水烊酸完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284941
求助须知:如何正确求助?哪些是违规求助? 3812379
关于积分的说明 11941834
捐赠科研通 3458875
什么是DOI,文献DOI怎么找? 1896986
邀请新用户注册赠送积分活动 945639
科研通“疑难数据库(出版商)”最低求助积分说明 849351