Pathways for ecological restoration of territorial space based on ecosystem integrity: A case study of approach to protecting and restoring mountains, rivers, forests, farmlands, lakes, and grasslands in Beijing, China

恢复生态学 功能生态学 生态工程 生态学 环境资源管理 北京 地理 景观生态学 可持续发展 生态系统 生态健康 中国 生态系统服务 环境科学 栖息地 考古 生物
作者
Miao Yang,Zetong Wang,Zimo Zhang,Peng Chen,Dan Zhao,E Cheng,Chenxing Wang,Yan Yan
标识
DOI:10.1016/j.ecofro.2024.07.003
摘要

One of the most important issues to global sustainable development is coordinating the relationship between social-economic development and ecological-environmental protection. The United Nations has declared 2021–2030 as the "Decade on Ecological Restoration", which aims to raise public awareness of the importance of ecosystem restoration. As the material carrier of human activities and the embodiment of ecological processes, the ecological restoration activities for land are not only the process and function towards adjusting ecological space, but also important means to regulate the relationship between ecological space and production space, living space. Despite rich theoretical and practical experience, ecological restoration around megacities is still weak. The complex relationship between urban populations, land and the intense human activities lead to the rapid and strong land use changes, which form deviation from the slow process of natural ecosystem recovery. In this study, we conducted during the formulation of the Beijing landscape engineering implementation plan, extracted the ecological space recovery path by considering various factors such as diversity, river basin ecological restoration measures, and both urban and rural natural elements. We determined the main ecological problems, analyzed the ecological background and basin characteristics, and established the ecological protection targets for the river basin. We illustrated the process of establishing the framework and pathway for the ecological restoration of ecosystem integrity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruen发布了新的文献求助30
3秒前
3秒前
FelixChen应助Physio采纳,获得10
3秒前
green发布了新的文献求助10
4秒前
汤米bb发布了新的文献求助10
8秒前
gmjinfeng完成签到,获得积分0
9秒前
科研通AI5应助bread采纳,获得10
9秒前
hzauhzau发布了新的文献求助10
9秒前
隐形曼青应助green采纳,获得10
10秒前
linlin完成签到,获得积分10
10秒前
小二郎应助星许采纳,获得10
11秒前
14秒前
林lin完成签到,获得积分10
15秒前
科目三应助DownTAT采纳,获得10
15秒前
翻斗花园第一突击手牛爷爷完成签到 ,获得积分10
16秒前
green完成签到,获得积分10
17秒前
ding应助JING采纳,获得10
17秒前
碳火涮羊肉完成签到 ,获得积分10
17秒前
18秒前
打打应助饱满的靖易采纳,获得50
20秒前
小小小鲤鱼完成签到,获得积分10
21秒前
感动书文完成签到,获得积分10
25秒前
26秒前
小松鼠完成签到 ,获得积分10
26秒前
27秒前
Jenkin完成签到,获得积分10
28秒前
现代的澜发布了新的文献求助10
29秒前
fjljylm完成签到 ,获得积分20
29秒前
30秒前
DownTAT发布了新的文献求助10
30秒前
冰蓝完成签到 ,获得积分10
30秒前
阔达老五发布了新的文献求助10
31秒前
32秒前
32秒前
35秒前
Jessekwok发布了新的文献求助10
36秒前
万能图书馆应助DownTAT采纳,获得10
37秒前
黑糖珍珠完成签到 ,获得积分10
38秒前
39秒前
乐观小之应助Wendy采纳,获得10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835045
求助须知:如何正确求助?哪些是违规求助? 3377563
关于积分的说明 10499197
捐赠科研通 3097057
什么是DOI,文献DOI怎么找? 1705466
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772130