Microbial Surface Confined Growth Strategy for the Synthesis of Highly Loaded NiCoP Nanoparticles with Hollow Derived Carbon Shells for Sodium Ion Capture

材料科学 化学工程 吸附 纳米颗粒 电化学 电极 纳米技术 化学 有机化学 工程类 物理化学
作者
Jianhua Yuan,Tianxiao Sun,Jinfeng Chen,Runhong Zhou,Jianglin Cao,Fei Yu,Liqing Li,Xiumin Zhong,Jie Ma
出处
期刊:Advanced Science [Wiley]
被引量:4
标识
DOI:10.1002/advs.202407616
摘要

Abstract NiCoP is considered to be a very promising material for sodium ion (Na + ) capturing, however, the volume expansion and poor cyclic stability of NiCoP during the storage limit its application. In response to these limitations, Finite element simulations are used to help in the rational design of the NiCoP structure. A novel microbial surface confined growth strategy is employed to synthesize highly loaded NiCoP nanoparticles (NiCoP NPs) supported on hollow derived carbon shells (NPC), constructing a stable composite structure known as NiCoP@NPC. The highly loaded and uniformly dispersed NiCoP NPs are anchored in‐situ and fully exposed, enabling enhanced electron and ion transport efficiency and thereby boosting pseudocapacitance. The NPC from yeast played a crucial role in mitigating the volume expansion of NiCoP NPs, thereby enhancing the structural stability of the electrode. Consequently, NiCoP@NPC demonstrated a high Na + storage capacity of 59.70 ± 1.51 mg g −1 at 1.6 V and maintained good cycling stability, retaining over 73.3% of its capacity after 80 cycles at 1.6 V. Scanning transmission X‐ray microscopy (STXM) analysis confirmed the reversible conversion reaction mechanism and the robust structure of NiCoP@NPC before and after the reaction; Density function theory (DFT) and electrochemical quartz crystal microbalance (EQCM‐D) further confirmed that the structural design of NiCoP@NPC promoted electron transport, Na + adsorption as well as improved cycling stability. This study is intended to provide a new idea for the in‐situ confined synthesis of metal phosphides electrodes with stable performance and structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy。完成签到,获得积分10
刚刚
懒羊羊关注了科研通微信公众号
1秒前
1秒前
So完成签到 ,获得积分10
1秒前
七七完成签到 ,获得积分10
1秒前
斯文问旋完成签到,获得积分10
1秒前
zyl完成签到,获得积分10
2秒前
2秒前
aajjxx发布了新的文献求助10
2秒前
木头人发布了新的文献求助10
2秒前
平淡晓博完成签到,获得积分10
3秒前
Month完成签到,获得积分10
4秒前
迅速的鹤完成签到,获得积分10
4秒前
荣耀发布了新的文献求助10
4秒前
土木搬砖法律完成签到,获得积分10
4秒前
maxinghrr完成签到,获得积分0
5秒前
赵yy应助付小佳采纳,获得10
5秒前
violin发布了新的文献求助30
5秒前
清秀映秋发布了新的文献求助10
5秒前
xsss完成签到,获得积分10
5秒前
5秒前
小米粥完成签到 ,获得积分10
6秒前
6秒前
NexusExplorer应助开朗丹蝶采纳,获得10
6秒前
Month发布了新的文献求助10
7秒前
shi hui应助rngay采纳,获得10
7秒前
任性的睫毛完成签到,获得积分10
7秒前
Ray完成签到,获得积分10
7秒前
丁昂霄完成签到 ,获得积分10
7秒前
传奇3应助木棉哆哆采纳,获得10
8秒前
Shawn发布了新的文献求助10
8秒前
8秒前
HHMTT完成签到,获得积分10
8秒前
善学以致用应助yujia采纳,获得10
9秒前
Imp完成签到,获得积分10
9秒前
9秒前
李媛媛完成签到,获得积分10
9秒前
10秒前
大江流完成签到,获得积分10
10秒前
Weaver_312完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415