Microbial Surface Confined Growth Strategy for the Synthesis of Highly Loaded NiCoP Nanoparticles with Hollow Derived Carbon Shells for Sodium Ion Capture

材料科学 化学工程 吸附 纳米颗粒 电化学 电极 纳米技术 化学 有机化学 工程类 物理化学
作者
Jianhua Yuan,Tianxiao Sun,Jinfeng Chen,Runhong Zhou,Jianglin Cao,Fei Yu,Liqing Li,Xiumin Zhong,Jie Ma
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202407616
摘要

Abstract NiCoP is considered to be a very promising material for sodium ion (Na + ) capturing, however, the volume expansion and poor cyclic stability of NiCoP during the storage limit its application. In response to these limitations, Finite element simulations are used to help in the rational design of the NiCoP structure. A novel microbial surface confined growth strategy is employed to synthesize highly loaded NiCoP nanoparticles (NiCoP NPs) supported on hollow derived carbon shells (NPC), constructing a stable composite structure known as NiCoP@NPC. The highly loaded and uniformly dispersed NiCoP NPs are anchored in‐situ and fully exposed, enabling enhanced electron and ion transport efficiency and thereby boosting pseudocapacitance. The NPC from yeast played a crucial role in mitigating the volume expansion of NiCoP NPs, thereby enhancing the structural stability of the electrode. Consequently, NiCoP@NPC demonstrated a high Na + storage capacity of 59.70 ± 1.51 mg g −1 at 1.6 V and maintained good cycling stability, retaining over 73.3% of its capacity after 80 cycles at 1.6 V. Scanning transmission X‐ray microscopy (STXM) analysis confirmed the reversible conversion reaction mechanism and the robust structure of NiCoP@NPC before and after the reaction; Density function theory (DFT) and electrochemical quartz crystal microbalance (EQCM‐D) further confirmed that the structural design of NiCoP@NPC promoted electron transport, Na + adsorption as well as improved cycling stability. This study is intended to provide a new idea for the in‐situ confined synthesis of metal phosphides electrodes with stable performance and structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小生不才发布了新的文献求助10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
范玉平完成签到,获得积分0
3秒前
4秒前
隐形曼青应助怕黑香菇采纳,获得10
6秒前
小马甲应助晓宇采纳,获得10
6秒前
7秒前
7秒前
冰魂应助Steven采纳,获得10
8秒前
9秒前
Rico发布了新的文献求助10
10秒前
情怀应助cdercder采纳,获得10
12秒前
12秒前
无心的无施完成签到,获得积分10
14秒前
桐桐应助晓宇采纳,获得10
14秒前
丘比特应助QIN采纳,获得10
21秒前
希望天下0贩的0应助晓宇采纳,获得30
24秒前
logic22完成签到,获得积分10
26秒前
顾矜应助风中的元灵采纳,获得10
28秒前
CodeCraft应助晓宇采纳,获得10
33秒前
默默完成签到 ,获得积分10
33秒前
36秒前
36秒前
英俊的铭应助晓宇采纳,获得10
42秒前
都是发布了新的文献求助10
42秒前
QIN完成签到,获得积分10
44秒前
李念给李念的求助进行了留言
51秒前
51秒前
54秒前
陌路发布了新的文献求助10
55秒前
HJJHJH发布了新的文献求助20
57秒前
领导范儿应助小高同学采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385