Hydrogel-Based Network Metamaterials with Biological Tissue-like Poisson’s Ratio Behavior and Stress Response

材料科学 超材料 泊松比 压力(语言学) 复合材料 泊松分布 纳米技术 光电子学 语言学 统计 哲学 数学
作者
Yisong Qiu,Hongfei Ye,Shuaiqi Zhang,Hongwu Zhang,Yonggang Zheng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (45): 62371-62381 被引量:1
标识
DOI:10.1021/acsami.4c12993
摘要

Soft network metamaterials are widely used in fields such as flexible electronics, tissue engineering, and biomedicine due to their superior properties including low density, high stretchability, and high breathability. However, the prediction and customization of the nonlinear mechanical behavior of soft network metamaterials remain a challenging problem. In this study, a family of hydrogel-based network metamaterials with biological tissue-like mechanical properties are developed based on a machine learning-driven optimization design method. Numerical and experimental results explain the relationship between the mechanical properties of the designed metamaterials and their microstructural features and stretching ratios. The results indicate that the hydrogel-based network metamaterials exhibit J-shaped stress-deformation (σ-λ) behavior similar to biological tissues. This phenomenon arises from the transition of the deformation mode of metamaterials from bending-dominated to stretching-dominated as the stretching ratio increases. Based on the proposed design scheme, the Poisson's ratio of metamaterials can be adjusted within a remarkably wide range of -1.06 to 1.34. Furthermore, through optimizing the design parameters of the metamaterial, the customization of network metamaterials with biological tissue-like zero Poisson's ratio behavior and stress response is achieved. The potential applications of hydrogel-based network metamaterials are demonstrated through artificial skin and LED integrated device. This research offers novel insights into predicting, designing, and fabricating the mechanical behavior of soft network metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦小丸子完成签到,获得积分10
1秒前
Jerry发布了新的文献求助10
2秒前
遊星完成签到,获得积分10
2秒前
何处芳歇完成签到,获得积分10
3秒前
Lee完成签到,获得积分10
3秒前
嘟嘟关注了科研通微信公众号
3秒前
4秒前
十三发布了新的文献求助10
4秒前
传奇3应助秒秒采纳,获得10
5秒前
YingxueRen完成签到,获得积分10
5秒前
杰克李李完成签到,获得积分10
6秒前
朝天完成签到,获得积分10
6秒前
活力亦瑶完成签到,获得积分10
8秒前
燕熙完成签到 ,获得积分10
8秒前
冯堆堆完成签到,获得积分10
8秒前
zzx完成签到 ,获得积分10
8秒前
9秒前
PN_Allen完成签到,获得积分10
9秒前
Lore完成签到 ,获得积分10
9秒前
念念完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
科研通AI2S应助布丁采纳,获得10
10秒前
10秒前
西西完成签到,获得积分10
11秒前
跳跃豆芽完成签到 ,获得积分10
11秒前
12秒前
华仔应助tian采纳,获得10
12秒前
单纯清完成签到,获得积分20
12秒前
12秒前
345完成签到,获得积分10
12秒前
坦率的夜玉完成签到,获得积分10
13秒前
ccl完成签到,获得积分10
13秒前
司马秋凌完成签到,获得积分10
13秒前
lllll完成签到,获得积分20
13秒前
哈哈完成签到,获得积分10
13秒前
包飞雪发布了新的文献求助10
14秒前
14秒前
Lucas应助机智的雁风采纳,获得10
14秒前
太清完成签到,获得积分10
14秒前
搜集达人应助屎味烤地瓜采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577