Machine Learning-Assisted Raman Spectroscopy and SERS for Bacterial Pathogen Detection: Clinical, Food Safety, and Environmental Applications

拉曼光谱 食品安全 病菌 纳米技术 材料科学 化学 微生物学 食品科学 生物 光学 物理
作者
Md Hasan-Ur Rahman,Rabbi Sikder,Manoj Tripathi,Mahzuzah Zahan,Tao Ye,Etienne Z. Gnimpiéba,Bharat K. Jasthi,Alan Β. Dalton,Venkataramana Gadhamshetty
出处
期刊:Chemosensors [MDPI AG]
卷期号:12 (7): 140-140 被引量:36
标识
DOI:10.3390/chemosensors12070140
摘要

Detecting pathogenic bacteria and their phenotypes including microbial resistance is crucial for preventing infection, ensuring food safety, and promoting environmental protection. Raman spectroscopy offers rapid, seamless, and label-free identification, rendering it superior to gold-standard detection techniques such as culture-based assays and polymerase chain reactions. However, its practical adoption is hindered by issues related to weak signals, complex spectra, limited datasets, and a lack of adaptability for detection and characterization of bacterial pathogens. This review focuses on addressing these issues with recent Raman spectroscopy breakthroughs enabled by machine learning (ML), particularly deep learning methods. Given the regulatory requirements, consumer demand for safe food products, and growing awareness of risks with environmental pathogens, this study emphasizes addressing pathogen detection in clinical, food safety, and environmental settings. Here, we highlight the use of convolutional neural networks for analyzing complex clinical data and surface enhanced Raman spectroscopy for sensitizing early and rapid detection of pathogens and analyzing food safety and potential environmental risks. Deep learning methods can tackle issues with the lack of adequate Raman datasets and adaptability across diverse bacterial samples. We highlight pending issues and future research directions needed for accelerating real-world impacts of ML-enabled Raman diagnostics for rapid and accurate diagnosis and surveillance of pathogens across critical fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋壳儿完成签到,获得积分10
刚刚
香蕉觅云应助小唐采纳,获得10
1秒前
xu发布了新的文献求助10
1秒前
11发布了新的文献求助10
1秒前
123123发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
努力的刘富贵完成签到,获得积分10
2秒前
QTQ完成签到 ,获得积分10
2秒前
科研通AI6应助重要凤灵采纳,获得10
2秒前
2秒前
微笑老太发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
畅快时光发布了新的文献求助10
3秒前
25号底片完成签到,获得积分10
3秒前
健忘学姐完成签到,获得积分10
3秒前
晨晨完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
烟花应助ctttt采纳,获得10
5秒前
唐一完成签到,获得积分10
5秒前
5秒前
YT完成签到,获得积分10
5秒前
xiaozhejia完成签到,获得积分10
5秒前
6秒前
米饭发布了新的文献求助10
6秒前
星辰大海应助YUYUYU采纳,获得10
6秒前
小甜完成签到,获得积分10
6秒前
小阙123发布了新的文献求助10
7秒前
hhh发布了新的文献求助10
7秒前
23发布了新的文献求助10
7秒前
Akim应助杨瑞超采纳,获得10
8秒前
CHEN发布了新的文献求助10
8秒前
徐笑松完成签到 ,获得积分10
8秒前
childdead完成签到,获得积分10
8秒前
如意向真完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041