FELC-SLAM: Feature Extraction and Loop Closure Optimized Lidar SLAM System

点云 人工智能 激光雷达 同时定位和映射 计算机科学 计算机视觉 分割 特征(语言学) 特征提取 稳健性(进化) 匹配(统计) 机器人 遥感 移动机器人 数学 地理 生物化学 基因 统计 语言学 哲学 化学
作者
Ruizhen Gao,Yuang Li,Baihua Li,Guoguang Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115112-115112 被引量:1
标识
DOI:10.1088/1361-6501/ad6e0c
摘要

Abstract Simultaneous Localization and Mapping (SLAM) is one of the key technologies in robot navigation and autonomous driving, playing an important role in robot navigation. Due to the sparsity of LiDAR data and the singularity of point cloud features, accuracy loss of LiDAR SLAM can occur during point cloud matching and localization. In response to these issues, this paper proposes a LiDAR Measurement SLAM algorithm that integrates multi type geometric feature extraction and optimized point cloud registration algorithms. This article first adopts advanced ground segmentation methods and feature segmentation strategies, including ground features, edge features, planar features, and spherical features, to improve matching accuracy. In addition, this article improves the previous method for extracting edge and planar features, extracting clearer and more robust line and surface features to address the degradation of geometric features. Finally, by introducing a robust decoupling global registration method for loop closure detection in the backend of the system, the sparsity problem of distant point clouds and the degradation problem caused by the reduction of inner layers in point cloud registration were effectively solved. In the evaluation of the KITTI dataset, our algorithm reduced absolute trajectory error values by 60%, 29%, and 71% compared to LeGO-LOAM in multi loop and feature constrained scenarios (such as sequences 00, 01, and 02), respectively. The evaluation of the M2DGR and Botanic Garden datasets also indicates that the positioning accuracy of our algorithm is superior to other advanced LiDAR SLAM algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
清风徐来应助动听的秋白采纳,获得10
刚刚
1秒前
1秒前
小番茄完成签到,获得积分10
1秒前
boxi完成签到 ,获得积分10
2秒前
笨鸟先飞完成签到 ,获得积分10
2秒前
2秒前
梅狸猫发布了新的文献求助10
2秒前
Andrew02应助Robin采纳,获得10
2秒前
tt完成签到,获得积分10
3秒前
逍遥完成签到,获得积分10
3秒前
小明完成签到,获得积分10
4秒前
小野狼完成签到,获得积分10
5秒前
夜猫完成签到,获得积分10
5秒前
Orange应助严西采纳,获得10
5秒前
5秒前
有点小卑鄙完成签到,获得积分10
5秒前
wyw123完成签到,获得积分10
5秒前
haibing发布了新的文献求助10
5秒前
cc完成签到,获得积分20
6秒前
落寞冬云完成签到,获得积分10
7秒前
小团子完成签到 ,获得积分10
7秒前
梧桐雨210完成签到,获得积分10
7秒前
唠叨的雪糕完成签到,获得积分10
8秒前
小雨完成签到,获得积分10
8秒前
矜天完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
jjeuchi发布了新的文献求助20
10秒前
Lenacici完成签到,获得积分10
10秒前
burno1112完成签到,获得积分10
11秒前
冰激凌完成签到,获得积分10
12秒前
犹豫的初丹完成签到,获得积分10
12秒前
啦啦啦完成签到,获得积分10
12秒前
12秒前
Rling完成签到,获得积分10
12秒前
纷纭完成签到,获得积分10
13秒前
李雨泽完成签到,获得积分10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774