Few-shot fine-grained fish species classification via sandwich attention CovaMNet

计算机科学 人工智能 公制(单位) 特征(语言学) 模式识别(心理学) 任务(项目管理) 样品(材料) 弹丸 光学(聚焦) 机器学习 特征提取 渔业 工程类 哲学 运营管理 物理 有机化学 化学 光学 系统工程 生物 色谱法 语言学
作者
Jiping Zhai,Lu Han,Ying Xiao,Mai Yan,Yueyue Wang,Xiaodong Wang
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:10 被引量:9
标识
DOI:10.3389/fmars.2023.1149186
摘要

The task of accurately classifying marine fish species is of great importance to marine ecosystem investigations, but previously used methods were extremely labor-intensive. Computer vision approaches have the advantages of being long-term, non-destructive, non-contact and low-cost, making them ideal for this task. Due to the unique nature of the marine environment, marine fish data is difficult to collect and often of poor quality, and learning how to identify additional categories from a small sample of images is a very difficult task, meanwhile fish classification is also a fine-grained problem. Most of the existing solutions dealing with few-shot classification mainly focus on the improvement of the metric-based approaches. For few-shot classification tasks, the features extracted by CNN are sufficient for the metric-based model to make a decision, while for few-shot fine-grained classification with small inter-class differences, the CNN features might be insufficient and feature enhancement is essential. This paper proposes a novel attention network named Sandwich Attention Covariance Metric Network (SACovaMNet), which adds a new sandwich-shaped attention module to the CovaMNet based on metric learning, strengthening the CNN’s ability to perform feature extraction on few-shot fine-grained fish images in a more detailed and comprehensive manner. This new model can not only capture the classification objects from the global perspective, but also extract the local subtle differences. By solving the problem of feature enhancement, this new model can accurately classify few-shot fine-grained marine fish images. Experiments demonstrate that this method outperforms state-of-the-art solutions on few-shot fine-grained fish species classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EasyNan完成签到,获得积分10
2秒前
JamesPei应助金金采纳,获得10
2秒前
3秒前
小二郎应助船夫采纳,获得10
6秒前
7秒前
gg发布了新的文献求助10
8秒前
猕猴桃完成签到,获得积分20
9秒前
orixero应助summer采纳,获得10
10秒前
我服有点黑完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
14秒前
lxy发布了新的文献求助10
15秒前
柒玥完成签到,获得积分10
16秒前
情怀应助颜云尔采纳,获得10
17秒前
星辰大海应助现实的行云采纳,获得10
20秒前
Sophie发布了新的文献求助10
21秒前
21秒前
gaga发布了新的文献求助10
22秒前
Naruto发布了新的文献求助20
22秒前
科研通AI5应助YY采纳,获得10
23秒前
大反应釜发布了新的文献求助10
25秒前
26秒前
景代丝发布了新的文献求助10
27秒前
dongbei完成签到,获得积分10
27秒前
树叶有专攻完成签到,获得积分10
27秒前
27秒前
31秒前
31秒前
32秒前
柠檬完成签到 ,获得积分10
32秒前
火炬计划发布了新的文献求助10
32秒前
33秒前
所所应助JJbond采纳,获得10
34秒前
34秒前
叶子发布了新的文献求助10
34秒前
烟花应助dongbei采纳,获得10
35秒前
枫儿完成签到,获得积分10
36秒前
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810579
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374243
捐赠科研通 3071730
什么是DOI,文献DOI怎么找? 1687057
邀请新用户注册赠送积分活动 811396
科研通“疑难数据库(出版商)”最低求助积分说明 766644