AMLnet, A deep-learning pipeline for the differential diagnosis of acute myeloid leukemia from bone marrow smears

医学 骨髓 髓系白血病 急性白血病 血液学 恶性肿瘤 髓样 病理 鉴别诊断 内科学 骨髓抽出物 考试(生物学) 白血病 肿瘤科 放射科 古生物学 生物
作者
Zebin Yu,LI Jian-hu,Xin Wen,Yingli Han,Penglei Jiang,Meng Zhu,Minmin Wang,Xiangli Gao,Dan Shen,Ting Zhang,Shengchuan Zhao,Yijing Zhu,Jixiang Tong,Shuchong Yuan,Hong‐Hu Zhu,He Huang,Pengxu Qian
出处
期刊:Journal of Hematology & Oncology [BioMed Central]
卷期号:16 (1) 被引量:3
标识
DOI:10.1186/s13045-023-01419-3
摘要

Acute myeloid leukemia (AML) is a deadly hematological malignancy. Cellular morphology detection of bone marrow smears based on the French-American-British (FAB) classification system remains an essential criterion in the diagnosis of hematological malignancies. However, the diagnosis and discrimination of distinct FAB subtypes of AML obtained from bone marrow smear images are tedious and time-consuming. In addition, there is considerable variation within and among pathologists, particularly in rural areas, where pathologists may not have relevant expertise. Here, we established a comprehensive database encompassing 8245 bone marrow smear images from 651 patients based on a retrospective dual-center study between 2010 and 2021 for the purpose of training and testing. Furthermore, we developed AMLnet, a deep-learning pipeline based on bone marrow smear images, that can discriminate not only between AML patients and healthy individuals but also accurately identify various AML subtypes. AMLnet achieved an AUC of 0.885 at the image level and 0.921 at the patient level in distinguishing nine AML subtypes on the test dataset. Furthermore, AMLnet outperformed junior human experts and was comparable to senior experts on the test dataset at the patient level. Finally, we provided an interactive demo website to visualize the saliency maps and the results of AMLnet for aiding pathologists' diagnosis. Collectively, AMLnet has the potential to serve as a fast prescreening and decision support tool for cytomorphological pathologists, especially in areas where pathologists are overburdened by medical demands as well as in rural areas where medical resources are scarce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洋子完成签到 ,获得积分10
刚刚
1秒前
CodeCraft应助JET_Li采纳,获得10
1秒前
rous发布了新的文献求助10
1秒前
麻呢呢完成签到,获得积分10
1秒前
啊啊啊123完成签到,获得积分20
1秒前
2秒前
ZhouYW应助通关采纳,获得20
2秒前
2秒前
2秒前
研友_LmYGmL发布了新的文献求助10
2秒前
dreamer完成签到 ,获得积分10
3秒前
yumi完成签到 ,获得积分10
3秒前
3秒前
Wendy发布了新的文献求助10
4秒前
zsl完成签到 ,获得积分10
4秒前
生姜给生姜的求助进行了留言
4秒前
一城完成签到 ,获得积分10
4秒前
洁净的醉波完成签到,获得积分10
4秒前
5秒前
Marvin42完成签到,获得积分10
6秒前
汉堡包应助颜超采纳,获得10
6秒前
ding应助wocao采纳,获得10
7秒前
Han完成签到,获得积分20
7秒前
哈哈哈发布了新的文献求助10
7秒前
dirk完成签到,获得积分10
7秒前
7秒前
SciGPT应助lindalin采纳,获得10
8秒前
满唐完成签到 ,获得积分10
8秒前
刻苦的晓蕾完成签到,获得积分10
8秒前
8秒前
谦让乘云发布了新的文献求助10
8秒前
寒冰寒冰发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
小番茄完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425