An investigation of hybrid models FEA coupled with AHP-ELECTRE, RSM-GA, and ANN-GA into the process parameter optimization of high-quality deep-drawn cylindrical copper cups

拉深 响应面法 遗传算法 层次分析法 有限元法 人工神经网络 过程(计算) 埃克力 工程类 计算机科学 机械工程 数学优化 结构工程 多准则决策分析 数学 人工智能 机器学习 运筹学 操作系统
作者
S.P. Sundar Singh Sivam,R. Rajendran,N. Harshavardhana
出处
期刊:Mechanics Based Design of Structures and Machines [Taylor & Francis]
卷期号:52 (1): 498-522 被引量:16
标识
DOI:10.1080/15397734.2022.2120497
摘要

Deep drawing is one of the primary sheet metal forming processes that is used all over the world. The current study focused on using Analytical Hierarchy Process-Elimination and Choice Translating the Reality (AHP-ELECTRE I), Response Surface Methodology-Genetic Algorithm (RSM-GA), and Artificial Neural Network-Genetic Algorithm (ANN–GA) for determining deep–drawing performance parameters. A hybrid FEA–MCDA–RSM–ANN–GA was built using an experimental design obtained from RSM to develop better quality products. It is integrated with finite element-based numerical deep drawing simulation to understand the intended responses and the impact of design factors without the need for costly trial tests. To improve the quality of drawn cups characterization, three process parameters-clearance, punch radius, and coefficient of friction-have been tuned to their optimum values like resultant tool force (N), spring back (µm), max forming limit curve (%), and max thinning rate. The optimization results showed the efficacy of the technique for process design, resulting in the reduction of both cost and time. The desirability index was calculated and compared with all the predictions. The hybrid models that have been developed may be suggested for accurate prediction and optimization of various process parameters and outcomes for any industrial application issues that could arise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洋子完成签到 ,获得积分10
1秒前
2秒前
CodeCraft应助JET_Li采纳,获得10
2秒前
rous发布了新的文献求助10
2秒前
麻呢呢完成签到,获得积分10
2秒前
啊啊啊123完成签到,获得积分20
2秒前
3秒前
ZhouYW应助通关采纳,获得20
3秒前
3秒前
3秒前
研友_LmYGmL发布了新的文献求助10
3秒前
dreamer完成签到 ,获得积分10
4秒前
yumi完成签到 ,获得积分10
4秒前
4秒前
Wendy发布了新的文献求助10
5秒前
zsl完成签到 ,获得积分10
5秒前
生姜给生姜的求助进行了留言
5秒前
一城完成签到 ,获得积分10
5秒前
洁净的醉波完成签到,获得积分10
5秒前
6秒前
Marvin42完成签到,获得积分10
7秒前
汉堡包应助颜超采纳,获得10
7秒前
ding应助wocao采纳,获得10
8秒前
Han完成签到,获得积分20
8秒前
哈哈哈发布了新的文献求助10
8秒前
dirk完成签到,获得积分10
8秒前
8秒前
SciGPT应助lindalin采纳,获得10
9秒前
满唐完成签到 ,获得积分10
9秒前
刻苦的晓蕾完成签到,获得积分10
9秒前
9秒前
谦让乘云发布了新的文献求助10
9秒前
寒冰寒冰发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
小番茄完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425