A Review on Deep Learning Super Resolution Techniques

计算机科学 深度学习 人工智能 反褶积 卷积神经网络 机器学习 特征学习 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 人工神经网络 算法 哲学 语言学
作者
John Julius Danker Khoo,King Hann Lim,Jonathan Then Sien Phang
标识
DOI:10.1109/icspc50992.2020.9305806
摘要

Super resolution techniques are used to reconstruct the detail of high-resolution image from low-resolution lossy image. The introduction of a deep learning approach in super resolution has drawn a lot of research interest in recent years due to its learning capability and noise immunity. The applications of deep learning super resolution can mainly be found in image recovery, medical imaging, and microscopy. In this paper, the deep learning super resolutions are explored in detail based on its models and architecture. They can be classified into three neural network (NN) models, i.e. Convolutional NN-based models, Recursive NN-based models, and Adversarial Network-based models. CNN-based models apply convolution operation to embed the latent feature and subsequently decode it with deconvolution operation to achieve a higher dimension. RNN-based models integrate the recursive depth model to enhance recursive learning with past memory. On the other hand, adversarial network-based models apply the generative manner to learn the probability of the input pattern to forecast the possible high dimension of output information. The details of each unsupervised model are discussed in this paper to highlight its advantages and limitations. The measurement metrics such as Peak Signal-to-Noise Ratio (PSNR), structural similarity (SSIM) and Mean opinion score (MOS) are highlighted for performance evaluation of each super resolution models. The significance of this study provide a compact review of the current development and trend in super resolution using various deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ssmall发布了新的文献求助10
刚刚
1秒前
2秒前
timo发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
完美世界应助隐形的傲易采纳,获得10
10秒前
情怀应助Rao采纳,获得10
10秒前
科研通AI5应助菜鸡5号采纳,获得10
10秒前
11秒前
是小明啦发布了新的文献求助10
11秒前
13秒前
CLN完成签到,获得积分10
15秒前
17秒前
爆米花应助timo采纳,获得10
17秒前
Liu发布了新的文献求助10
19秒前
19秒前
完美世界应助w934420513采纳,获得10
19秒前
20秒前
Gzdaigzn完成签到,获得积分10
20秒前
SCI完成签到,获得积分10
21秒前
郁奥古发布了新的文献求助10
22秒前
22秒前
23秒前
晓巨人发布了新的文献求助10
23秒前
杨少博发布了新的文献求助10
24秒前
24秒前
SWEETYXY发布了新的文献求助10
27秒前
SciGPT应助TIGun采纳,获得10
27秒前
幻梦发布了新的文献求助10
28秒前
roaring发布了新的文献求助10
29秒前
29秒前
田様应助麻生采纳,获得10
29秒前
30秒前
浩二完成签到,获得积分10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
32秒前
Juvenilesy应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358