本德分解
数学优化
水准点(测量)
分解
对偶(语法数字)
分解法(排队论)
利用
整数规划
整数(计算机科学)
计算机科学
节点(物理)
数学
算法
工程类
艺术
生态学
文学类
大地测量学
计算机安全
离散数学
结构工程
生物
程序设计语言
地理
作者
Ragheb Rahmaniani,Shabbir Ahmed,Teodor Gabriel Crainic,Michel Gendreau,Walter Rei
出处
期刊:Operations Research
[Institute for Operations Research and the Management Sciences]
日期:2020-03-16
卷期号:68 (3): 878-895
被引量:65
标识
DOI:10.1287/opre.2019.1892
摘要
Many methods that have been proposed to solve large-scale MILP problems rely on the use of decomposition strategies. These methods exploit either the primal or dual structures of the problems by applying the Benders decomposition or Lagrangian dual decomposition strategy, respectively. In “The Benders Dual Decomposition Method,” Rahmaniani, Ahmed, Crainic, Gendreau, and Rei propose a new and high-performance approach that combines the complementary advantages of both strategies. The authors show that this method (i) generates stronger feasibility and optimality cuts compared with the classical Benders method, (ii) can converge to the optimal integer solution at the root node of the Benders master problem, and (iii) is capable of generating high-quality incumbent solutions at the early iterations of the algorithm. The developed algorithm obtains encouraging computational results when used to solve various benchmark MILP problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI