材料科学
离子电导率
电解质
复合数
锂(药物)
环氧乙烷
电化学
电化学窗口
化学工程
快离子导体
离子键合
合金
电导率
氧化物
聚合物
复合材料
冶金
离子
电极
有机化学
共聚物
医学
化学
物理化学
工程类
内分泌学
作者
Yuxuan Liu,Renzong Hu,Dechao Zhang,Jiangwen Liu,Fang Liu,Jie Cui,Zuopeng Lin,Jinsong Wu,Min Zhu
标识
DOI:10.1002/adma.202004711
摘要
Abstract To achieve high ionic conductivity for solid electrolyte, an artificial Li‐rich interface layer of about 60 nm thick has been constructed in polymer‐based poly(ethylene oxide)‐lithium bis(trifluoromethanesulfonyl)imide composite solid electrolyte (briefly noted as PEO m ) by adding Li‐based alloys. As revealed by high‐resolution transmission electron microscopy and electron energy loss spectroscopy, an artificial interface layer of amorphous feature is created around the Li‐based alloy particles with the gradient distribution of Li across it. Electrochemical analysis and theoretical modeling demonstrate that the interface layer provides fast ion transport path and plays a key role in achieving high and stable ionic conductivity for PEO m ‐Li 21 Si 5 composite solid electrolyte. The PEO m ‐5%Li 21 Si 5 composite electrolyte exhibits an ionic conductivity of 3.9 × 10 –5 S cm −1 at 30 ° C and 5.6 × 10 −4 S cm −1 at 45 ° C. The LiFePO 4 | PEO m ‐5%Li 21 Si 5 | Li all‐solid‐state batteries could maintain a stable capacity of 129.2 mA h g −1 at 0.2 C and 30 ° C after 100 cycles, and 111.3 mA h g −1 after 200 cycles at 0.5 C and 45 ° C, demonstrating excellent cycling stability and high‐rate capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI