A survey on federated learning

计算机科学 联合学习 上传 新闻聚合器 建筑 分类 机器学习 人工智能 数据科学 万维网 数据库 艺术 视觉艺术
作者
Chen Zhang,Yu Xie,Hang Bai,Bin Yu,Weihong Li,Yuan Gao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:216: 106775-106775 被引量:878
标识
DOI:10.1016/j.knosys.2021.106775
摘要

Federated learning is a set-up in which multiple clients collaborate to solve machine learning problems, which is under the coordination of a central aggregator. This setting also allows the training data decentralized to ensure the data privacy of each device. Federated learning adheres to two major ideas: local computing and model transmission, which reduces some systematic privacy risks and costs brought by traditional centralized machine learning methods. The original data of the client is stored locally and cannot be exchanged or migrated. With the application of federated learning, each device uses local data for local training, then uploads the model to the server for aggregation, and finally the server sends the model update to the participants to achieve the learning goal. To provide a comprehensive survey and facilitate the potential research of this area, we systematically introduce the existing works of federated learning from five aspects: data partitioning, privacy mechanism, machine learning model, communication architecture and systems heterogeneity. Then, we sort out the current challenges and future research directions of federated learning. Finally, we summarize the characteristics of existing federated learning, and analyze the current practical application of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的难敌完成签到,获得积分20
刚刚
3237924531完成签到,获得积分10
刚刚
1秒前
王jh发布了新的文献求助10
6秒前
7秒前
本人狂躁易怒关注了科研通微信公众号
9秒前
10秒前
CraneShadow发布了新的文献求助10
11秒前
何1完成签到 ,获得积分10
11秒前
阳光念桃完成签到,获得积分10
12秒前
Talha完成签到,获得积分10
13秒前
13秒前
科研通AI5应助Stting采纳,获得10
14秒前
布吉岛发布了新的文献求助10
15秒前
17完成签到 ,获得积分10
18秒前
tfq200完成签到,获得积分10
18秒前
nihao发布了新的文献求助10
19秒前
hzhniubility完成签到,获得积分10
20秒前
20秒前
20秒前
Yaon-Xu完成签到,获得积分10
21秒前
jpc完成签到 ,获得积分10
22秒前
李爱国应助Math4396采纳,获得10
22秒前
23秒前
Gjq发布了新的文献求助10
25秒前
qw完成签到,获得积分10
26秒前
26秒前
节能减排发布了新的文献求助10
28秒前
科研小白完成签到,获得积分10
29秒前
30秒前
见贤思齐发布了新的文献求助10
31秒前
yc完成签到,获得积分20
32秒前
Qiqige完成签到,获得积分10
32秒前
丘比特应助嬉笑采纳,获得10
33秒前
动漫大师发布了新的文献求助10
33秒前
33秒前
甜甜芾完成签到,获得积分20
34秒前
Lucas应助CraneShadow采纳,获得10
34秒前
科研小白发布了新的文献求助10
35秒前
jinghong完成签到 ,获得积分10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150