Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study

电解质 化学 碳酸乙烯酯 电化学 二甲氧基乙烷 电池(电) 化学工程 密度泛函理论 电化学电位 无机化学 电极 计算化学 热力学 物理化学 工程类 功率(物理) 物理
作者
Anja Kopač Lautar,Jan Bitenc,Tomaž Rejec,Robert Dominko,Jean‐Sébastien Filhol,Marie‐Liesse Doublet
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (11): 5146-5153 被引量:91
标识
DOI:10.1021/jacs.9b12474
摘要

The electrochemical degradation of two solvent-based electrolytes for Mg-metal batteries is investigated through a grand canonical density functional theory (DFT) approach. Both electrolytes are highly reactive in the double layer region where the solvated species have no direct contact with the Mg-surface, hence emphasizing that surface reactions are not the only phenomena responsible for electrolyte degradation. Applied to dimethoxyethane (DME) and ethylene carbonate (EC), the present methodology shows that both solvents should thermodynamically decompose in the double layer prior to the Mg2+/Mg0 reduction, leading to electrochemically inactive reaction products. Based on thermodynamic considerations, Mg0 deposition should not be possible, which contrasts with experiments, at least for DME-based electrolytes. This apparent contradiction is here addressed through the rationalization of the electrochemical mechanism underlying solvent electroactivation. An extended operation potential window (OPW) is extracted, in which the Mg2+/Mg0 reduction can compete with electrolyte decomposition, thus enabling battery operation beyond the solvated species thermodynamic stability. The chemical study of the degradation products is in excellent agreement with experiments and offers rationale for the Mg-battery failure in EC electrolyte and capacity fade in DME electrolyte. The potential-dependent approach proposed herein is thus able to successfully tackle the challenging problem of interface electrochemistry. Being fully transferable to any other electrochemical systems, this methodology should provide rational guidelines for the development of viable electrolytes for multivalent batteries and, more generally, energy conversion and storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Krrr完成签到,获得积分10
1秒前
2秒前
liuuuuu完成签到,获得积分10
2秒前
mzc发布了新的文献求助10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助WSZXQ采纳,获得10
6秒前
黄婷婷发布了新的文献求助10
6秒前
共享精神应助山山而川采纳,获得10
7秒前
执着期待完成签到 ,获得积分10
7秒前
zhongjr_hz完成签到,获得积分10
7秒前
程风破浪发布了新的文献求助10
8秒前
11秒前
11秒前
11秒前
JamesPei应助Sunday采纳,获得10
12秒前
加油呀完成签到,获得积分10
13秒前
Panda尧完成签到,获得积分10
13秒前
WSZXQ发布了新的文献求助10
18秒前
11112发布了新的文献求助10
18秒前
斯文败类应助wxd采纳,获得10
21秒前
22秒前
23秒前
26秒前
清水胖子发布了新的文献求助10
29秒前
Leukocyte完成签到 ,获得积分10
31秒前
11111完成签到 ,获得积分10
32秒前
小飞飞应助夏紫儿采纳,获得10
34秒前
清水胖子完成签到,获得积分20
39秒前
顾矜应助zzz采纳,获得10
39秒前
49秒前
51秒前
xiaobai完成签到,获得积分20
51秒前
时尚平卉完成签到,获得积分10
53秒前
魔幻的小蘑菇完成签到 ,获得积分10
54秒前
zzz发布了新的文献求助10
54秒前
山山而川发布了新的文献求助10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549