亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential

药物发现 药效团 计算机科学 计算生物学 利什曼病 虚拟筛选 利什曼原虫 药品 数据科学 风险分析(工程) 生物 生物信息学 医学 药理学 寄生虫寄主 万维网 免疫学
作者
Samuel K. Kwofie,Emmanuel Broni,Bismark Dankwa,Kweku S. Enninful,Gabriel B. Kwarko,Louis K. S. Darko,Ravi Durvasula,Prakasha Kempaiah,Brijesh Rathi,Whelton A. Miller,Abu Yaya,Michael D. Wilson
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:20 (5): 349-366 被引量:17
标识
DOI:10.2174/1568026620666200128160454
摘要

The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zhaoyg采纳,获得10
8秒前
沉静代芹发布了新的文献求助10
10秒前
22秒前
23秒前
27秒前
27秒前
zhaoyg发布了新的文献求助10
27秒前
ceeray23应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
Jasper应助科研通管家采纳,获得10
31秒前
ceeray23应助科研通管家采纳,获得10
31秒前
ceeray23应助科研通管家采纳,获得10
31秒前
32秒前
38秒前
科研通AI6应助温婉的凝雁采纳,获得10
44秒前
无与伦比完成签到 ,获得积分10
1分钟前
dfb发布了新的文献求助10
1分钟前
1分钟前
liangco关注了科研通微信公众号
1分钟前
mm完成签到 ,获得积分10
1分钟前
欣喜的香菱完成签到 ,获得积分10
1分钟前
充电宝应助dfb采纳,获得10
1分钟前
qin完成签到,获得积分10
1分钟前
1分钟前
liangco发布了新的文献求助30
1分钟前
liangco完成签到,获得积分10
1分钟前
Cherry完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
liubai发布了新的文献求助10
2分钟前
dfb发布了新的文献求助10
2分钟前
踏实善若完成签到,获得积分10
2分钟前
踏实善若发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749550
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091