Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential

药物发现 药效团 计算机科学 计算生物学 利什曼病 虚拟筛选 利什曼原虫 药品 数据科学 风险分析(工程) 生物 生物信息学 医学 药理学 寄生虫寄主 万维网 免疫学
作者
Samuel K. Kwofie,Emmanuel Broni,Bismark Dankwa,Kweku S. Enninful,Gabriel B. Kwarko,Louis K. S. Darko,Ravi Durvasula,Prakasha Kempaiah,Brijesh Rathi,Whelton A. Miller,Abu Yaya,Michael D. Wilson
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science Publishers]
卷期号:20 (5): 349-366 被引量:17
标识
DOI:10.2174/1568026620666200128160454
摘要

The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助大井采纳,获得10
刚刚
1秒前
脑洞疼应助wangnn采纳,获得10
3秒前
科研通AI5应助zz采纳,获得10
3秒前
5秒前
小糯米发布了新的文献求助10
7秒前
许译匀发布了新的文献求助10
7秒前
aha发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
mjm应助e746700020采纳,获得10
10秒前
12秒前
12秒前
15秒前
刻苦的阁应助许译匀采纳,获得10
15秒前
刻苦的阁应助许译匀采纳,获得10
15秒前
科研通AI6应助许译匀采纳,获得10
15秒前
luoyun发布了新的文献求助10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
清风徐来应助科研通管家采纳,获得30
18秒前
英俊的铭应助君君采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
coolkid应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
21秒前
21秒前
21秒前
jctyp完成签到 ,获得积分10
23秒前
小蘑菇应助冰墨采纳,获得10
24秒前
鲜艳的从波完成签到,获得积分10
25秒前
26秒前
26秒前
相信发布了新的文献求助10
26秒前
ssss发布了新的文献求助10
27秒前
28秒前
涮命发布了新的文献求助30
28秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202170
求助须知:如何正确求助?哪些是违规求助? 3736953
关于积分的说明 11766727
捐赠科研通 3409268
什么是DOI,文献DOI怎么找? 1870561
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836402