亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flood susceptibility modelling using advanced ensemble machine learning models

暴发洪水 随机森林 支持向量机 接收机工作特性 计算机科学 机器学习 大洪水 人工智能 集合预报 洪水(心理学) 人工神经网络 数据挖掘 地理 心理学 考古 心理治疗师
作者
Abu Reza Md. Towfiqul Islam,Swapan Talukdar,Susanta Mahato,Sonali Kundu,Kutub Uddin Eibek,Quoc Bao Pham,Alban Kuriqi,Nguyễn Thị Thùy Linh
出处
期刊:Geoscience frontiers [Elsevier BV]
卷期号:12 (3): 101075-101075 被引量:466
标识
DOI:10.1016/j.gsf.2020.09.006
摘要

Floods are one of nature's most destructive disasters because of the immense damage to land, buildings, and human fatalities. It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods. Therefore, earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters. In this study, we applied and assessed two new hybrid ensemble models, namely Dagging and Random Subspace (RS) coupled with Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin, the northern region of Bangladesh. The application of these models includes twelve flood influencing factors with 413 current and former flooding points, which were transferred in a GIS environment. The information gain ratio, the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors. For the validation and the comparison of these models, for the ability to predict the statistical appraisal measures such as Freidman, Wilcoxon signed-rank, and t-paired tests and Receiver Operating Characteristic Curve (ROC) were employed. The value of the Area Under the Curve (AUC) of ROC was above 0.80 for all models. For flood susceptibility modelling, the Dagging model performs superior, followed by RF, the ANN, the SVM, and the RS, then the several benchmark models. The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KiraShaw应助科研通管家采纳,获得10
19秒前
星辰大海应助AWESOME Ling采纳,获得10
42秒前
45秒前
47秒前
zlf发布了新的文献求助10
53秒前
NexusExplorer应助zlf采纳,获得10
1分钟前
Yanjun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
Hello应助西北孤傲的狼采纳,获得10
1分钟前
Yanjun完成签到,获得积分10
2分钟前
joysa完成签到,获得积分10
2分钟前
KiraShaw应助科研通管家采纳,获得20
2分钟前
顾矜应助半凡采纳,获得10
3分钟前
Ds应助风中音响采纳,获得10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
浮游应助sixone采纳,获得10
3分钟前
sixone完成签到,获得积分10
3分钟前
思源应助33采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分10
3分钟前
迷路的初柔完成签到 ,获得积分10
4分钟前
spring完成签到,获得积分20
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
KiraShaw应助科研通管家采纳,获得10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
嘻嘻应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
4分钟前
kash想毕业发布了新的文献求助10
4分钟前
背书强完成签到 ,获得积分10
4分钟前
Phy给Phy的求助进行了留言
5分钟前
5分钟前
spring发布了新的文献求助10
5分钟前
花花123发布了新的文献求助10
5分钟前
杨舒舒完成签到,获得积分10
5分钟前
5分钟前
桐桐应助spring采纳,获得10
5分钟前
Phy发布了新的文献求助10
5分钟前
科目三应助花花123采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753398
求助须知:如何正确求助?哪些是违规求助? 4097824
关于积分的说明 12678591
捐赠科研通 3810966
什么是DOI,文献DOI怎么找? 2104034
邀请新用户注册赠送积分活动 1129224
关于科研通互助平台的介绍 1006440