Finite Neuron Method and Convergence Analysis

有限元法 数学 分段 边值问题 有限集 偏微分方程 欧米茄 应用数学 数学分析 物理 热力学 量子力学
作者
Jinchao Xu
出处
期刊:Communications in Computational Physics [Cambridge University Press]
卷期号:28 (5): 1707-1745 被引量:35
标识
DOI:10.4208/cicp.oa-2020-0191
摘要

We study a family of $H^m$-conforming piecewise polynomials based on artificial neural network, named as the finite neuron method (FNM), for numerical solution of $2m$-th order partial differential equations in $\mathbb{R}^d$ for any $m,d \geq 1$ and then provide convergence analysis for this method. Given a general domain $\Omega\subset\mathbb R^d$ and a partition $\mathcal T_h$ of $\Omega$, it is still an open problem in general how to construct conforming finite element subspace of $H^m(\Omega)$ that have adequate approximation properties. By using techniques from artificial neural networks, we construct a family of $H^m$-conforming set of functions consisting of piecewise polynomials of degree $k$ for any $k\ge m$ and we further obtain the error estimate when they are applied to solve elliptic boundary value problem of any order in any dimension. For example, the following error estimates between the exact solution $u$ and finite neuron approximation $u_N$ are obtained. $$ \|u-u_N\|_{H^m(\Omega)}=\mathcal O(N^{-{1\over 2}-{1\over d}}). $$ Discussions will also be given on the difference and relationship between the finite neuron method and finite element methods (FEM). For example, for finite neuron method, the underlying finite element grids are not given a priori and the discrete solution can only be obtained by solving a non-linear and non-convex optimization problem. Despite of many desirable theoretical properties of the finite neuron method analyzed in the paper, its practical value is a subject of further investigation since the aforementioned underlying non-linear and non-convex optimization problem can be expensive and challenging to solve. For completeness and also convenience to readers, some basic known results and their proofs are also included in this manuscript.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
折柳完成签到 ,获得积分10
1秒前
一只鱼完成签到,获得积分10
1秒前
4秒前
落后月亮发布了新的文献求助10
5秒前
mad完成签到 ,获得积分10
7秒前
9秒前
要减肥听南完成签到,获得积分10
9秒前
心静听炊烟完成签到,获得积分10
10秒前
卿莞尔完成签到 ,获得积分10
11秒前
自由梦露完成签到,获得积分10
11秒前
12秒前
xinghun910发布了新的文献求助10
12秒前
huohuo143完成签到,获得积分10
13秒前
hhhhhhl完成签到,获得积分10
15秒前
落后月亮完成签到,获得积分10
17秒前
飘逸秋荷完成签到,获得积分10
18秒前
19秒前
李爱国应助自由梦露采纳,获得10
19秒前
娜娜完成签到,获得积分10
20秒前
bc应助宇辰采纳,获得30
21秒前
忧心的惜天完成签到 ,获得积分10
21秒前
MBL发布了新的文献求助10
22秒前
bkagyin应助77采纳,获得10
22秒前
kinase完成签到 ,获得积分10
24秒前
星辰大海应助忧心的惜天采纳,获得10
25秒前
25秒前
dique3hao完成签到 ,获得积分10
26秒前
28秒前
香蕉觅云应助lynn采纳,获得10
29秒前
重要的冰绿完成签到,获得积分10
33秒前
栖迟发布了新的文献求助10
35秒前
serena完成签到,获得积分10
35秒前
35秒前
wxs完成签到,获得积分10
36秒前
MBL完成签到,获得积分10
37秒前
37秒前
Thunnus001完成签到,获得积分10
38秒前
38秒前
爱吃西瓜圆滚滚完成签到,获得积分10
39秒前
喜之郎完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776256
求助须知:如何正确求助?哪些是违规求助? 3321728
关于积分的说明 10207386
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666508
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868