亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-Based Modality-Gated Networks for Image-Text Sentiment Analysis

计算机科学 情绪分析 判别式 模态(人机交互) 模式 人工智能 利用 自然语言处理 光学(聚焦) 词(群论) 情报检索 模式识别(心理学) 机器学习 语言学 社会科学 哲学 物理 计算机安全 社会学 光学
作者
Feiran Huang,Kaimin Wei,Jian Weng,Zhoujun Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:16 (3): 1-19 被引量:89
标识
DOI:10.1145/3388861
摘要

Sentiment analysis of social multimedia data has attracted extensive research interest and has been applied to many tasks, such as election prediction and products evaluation. Sentiment analysis of one modality (e.g., text or image) has been broadly studied. However, not much attention has been paid to the sentiment analysis of multimodal data. Different modalities usually have information that is complementary. Thus, it is necessary to learn the overall sentiment by combining the visual content with text description. In this article, we propose a novel method—Attention-Based Modality-Gated Networks (AMGN)—to exploit the correlation between the modalities of images and texts and extract the discriminative features for multimodal sentiment analysis. Specifically, a visual-semantic attention model is proposed to learn attended visual features for each word. To effectively combine the sentiment information on the two modalities of image and text, a modality-gated LSTM is proposed to learn the multimodal features by adaptively selecting the modality that presents stronger sentiment information. Then a semantic self-attention model is proposed to automatically focus on the discriminative features for sentiment classification. Extensive experiments have been conducted on both manually annotated and machine weakly labeled datasets. The results demonstrate the superiority of our approach through comparison with state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
cocopan发布了新的文献求助10
12秒前
CodeCraft应助manfullmoon采纳,获得10
33秒前
38秒前
58秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962